Untitled
COST Action E54
Characterisation of the fine structure and properties of
papermaking fibres using new technologies
16–17 October 2008
COST is supported by
the EU RTD Framework Programme
Felelős szerkesztő: Polyánszky Éva
Titkár: Lindner György
Folyóiratunknak ez a száma a Papyrus Hungária Zrt. által forgalmazott 115 g/m2-es G-Print papíron készült.
A PAPÍR- ÉS NYOMDAIPARI MŰSZAKI EGYESÜLET
KIADVÁNYUNK TELJES SZÖVEGÉT AZ ORSZÁGOS
SZÉCHÉNYI KÖNYVTÁR ELEKTRONIKUS PERIODIKA ARCHÍVUMA (EPA) ARCHÍVÁLJA(http://epa.oszk.hu/papiripar)
LII. évfolyam, 6. szám, 2008.
PAPÍRGYÁRTÁSBAN HASZNÁLT ROSTOK FINOMSZER-
CHARACTERISATION OF THE FINE STRUCTURE AND
KEZETÉNEK ÉS TULAJDONSÁGAINAK JELLEMZÉSE ÚJ
PROPERTIES OF PAPERMAKING FIBRES USING NEW
206 A. Treimanis: Előszó
207 A. Treimanis: Preface
208 Polyánszky É.: Különkiadás
209 É. Polyánszky: Special issue
210 Szikla Z.: A Dunapack-Hamburger dunaújvárosi gyárának és
211 Z. Szikla: Paper Industry in Hungary
az új csomagolópapírt gyártó gép projektjének bemutatása
215 A. Hernádi – I. Lele: Research activity in the field of fine
214 Hernádi S., Lele I.: Kutatási tevékenység a cellulózrostok
structure of cellulose fibres in PRI Budapest
finomszerkezetének területén a Papíripari Kutatóintézetben
219 I. Tánczos: Pyrolysis-Gas Chromatography-Mass Spectros-
(PKI) – Budapest
copy and its use for the analysis of wood pulp fibres and their
218 Tánczos I.: Pirolízis gázkromatográfia-tömegspektrometria
és a módszer használata fa, farost, szálasanyagok és ezek származékainak vizsgálatára
1. MUNKACSOPORT – Különböző kezelések hatása a papír-
WORKING GROUP 1. – Structure and chemical composition
ipari rostok szerkezetére és kémiai összetételére
of papermaking fibres after different types of treatment
224 A. Treimanis – A. Potthast – U. Henniges – T. Roseanu – U.
225 A. Tremanis – A. Potthast – I. Henniges – T. Roseanu
Grinfelds – T. Bukova – M. Skute: Mechanikailag leválasztott
– U.Grinfelds – T. Bukova – M.Skute: Analysis of surface layers
fehérítetlen és fehérített eukaliptusz kraftcellulóz rostok felületi
of mechanically peeled unbleached and bleached eucalyptus
rétegeinek elemzése
kraft pulp fibres
230 R. Eckhart – M. Donoser – W .Bauer: Újonnan kifejlesztett
231 R. Eckhart – M. Donoser – W. Bauer: A Newly developed
módszer az egyedi rost rugalmasságának méréséhez
Method for Single Fiber Flexibility Measurement
234 T. Larsson, C. Vasile: Cellulóz szupramolekuláris
235 T. Larsson, C. M. Popescu, C.Vasile: A comparative CP/MAS
szerkezetének szilárd fázisú NMR és Röntgen-diffrakciós
13C-NMR and XRD study of the cellulose supra-molecular
összehasonlító vizsgálata fenyő kraftcellulóz roston
structure in softwood kraft pulp fibres
2. MUNKACSOPORT – Egyedi rostok kezelése és jellemzé-
WORKING GROUP 2. – Treatment and characterisation of
individual fibres by microsystem technologies
238 P. Ander és G. Daniel: Cellulózrostok vizsgálata sósavval,
239 P. Ander, G. Daniel: Testing of pulp fibres with HCl, phosphoric
foszforsavval és cellulázzal
acid and cellulase
245 R. B. Adusumalli: Egyedi cellulózrostok mikromechanikája
245 R. B. Adusumalli: Micromechanics of single pulp fibres
246 L. Kappel, U. Hirn, W. Bauer, R. Schennach: Az egyedi rost-
247 L. Kappel, U. Hirn, W. Bauer, R. Schennach: Measuring the
rost kötések kötési területének mérése
bonded area of individual fiber-to-fiber bonds
3.MUNKACSOPORT – Rostok finomszerkezetének hatása
WORKING GROUP 3. – The impact of the fine structure of
papírképző tulajdonságaikra, valamint kémiai és enzimatikus
fibres on their papermaking properties and their chemical and
reaktivitásukra
enzymatic reactivity
252 J. Valchev, P. Bikov: Rostanyagok víztelenítése és az őrlés
253 I. Valchev, P. Bikov: Pulp dewatering and refining efficiency
hatékonyságának javítása celluláz kezeléssel
improvement by cellulase treatment
258 M. Lecourt,P. Nougier,A. Soranzo,S. Tapin-Lingua, M. Petit-
259 M. Lecourt, P. Nougier, A. Soranzo, S. Tapin-Lingua, M. Petit-
Conil: Hogyan hat az enzimes kezelés a rost tulajdonságaira?
Conil: How do enzymatic treatments affect fibre properties?
264 T. Arndt, G. Meinl, K. Erhard: Cellulózrostok finomszerkezeté-
265 T. Arndt, G. Meinl, K. Erhard: Behaviour of cellulose fine
nek viselkedése papírgyártási vizsgálatokban
structures in papermaking tests
270 Lele I., Víg A.: ZÁRSZÓ
271 I. Lele, A.Víg: Epilogue
Először is szeretném
MCS2: Egyedi rostok kezelése és jellemzésük
megköszönni a „Papíripar"
szerkesztőbizottságának, hogy megjelenteti az EU
Ez a Munkacsoport új eszközök kidolgozásá-
E54 COST Akció 2008.
ra fókuszál, nevezetesen a mikrotechnológiákra,
október 16-17-én Buda-
melyekkel az egyedi rostokat kezelni lehet, és a
pesten „Papírgyártásban
rostszerkezeteket laboratóriumi körülmények között
használt rostok finom-
lehet vizsgálni.
szerkezetének és tulaj-
donságainak jellemzése
új technológiákkal" cím-
MCS3: Rostok finomszerkezetének hatása
mel megtartott szakszemi-
papírképző tulajdonságaikra, valamint kémiai és
Prof. Arnis Treimanis
náriumának előadásait.
Az E54 COST Akció
2006-ban indult és 2010. decemberig tart. Máig 19
A 3. Munkacsoport kutatói és szakértői tapaszta-
ország csatlakozott az Akcióhoz, és számos, a COST-
latot cseréltek a rostok finomszerkezetének és módo-
ban nem résztvevő ország tudósai fejezték ki kíván-
sításaiknak a belőlük gyártott papírok tulajdonságai-
ságukat, hogy bekapcsolódjanak a projekt tevékeny-
ra gyakorolt hatásáról. A munka lényege különböző
kérdésekre koncentrált:
Az E54 Akció fő célkitűzése az, hogy új isme-
reteket szerezzünk a papíripari rostok mikro- és
• milyen hatást gyakorolnak a kémiai mechaniz-
nanoszerkezetéről, és a rostok hatékony és fenntart-
musok a rostok nano-felületén (azaz például
ható felhasználásához szükséges tulajdonságokról a
a maradék lignin, hemicellulóz és funkcionális
hagyományos és az új termékekben.
csoportok mennyisége és elhelyezkedése) a fon-
Örömömre szolgál, hogy arról tájékoztathatom
tosabb rosttulajdonságokra, és ezt hogyan lehet
Önöket, hogy az Akció eddigi kétéves periódusa alatt
értelmezni a papír minőségére vonatkozóan?
számos nagyon érdekes megközelítést és módszert
• a rostfelületek mechanikai paraméterei, mint
dolgoztak ki az Akció résztvevői. Ennek egy része tük-
pl. a rostfal vastagsága, a rostfal porozitása,
röződik az újságnak ebben a kiadásában.
valamint keménysége hogyan hat a rost tulaj-donságaira és így a végső papírtermékre?
Az E54COST Akció három munkacsoportot (MCS)
A három munkacsoport között kapcsolat alakult
ki és ezt fenn is kell tartani, mivel minden szempont fontos a papírgyártásban használt rostok finomszer-
MCS1: Különböző kezelések hatása a papíripari
kezetének és kémiájának jobb megértéséhez.
rostok szerkezetére és kémiai összetételére
Végezetül szeretném megköszönni az E54 COST
A Munkacsoport tevékenységének célja, hogy
Akció Budapesten megtartott szakszemináriuma helyi
• új jellemzési és értékelési módszereket fejlesz-
szervezőinek a kiváló munkát, mellyel biztosították a
nagyon sikeres és gyümölcsöző tanácskozást. Közülük
• új adatokat gyűjtsön és generáljon a papír-
szeretném megemlíteni Dr. Víg András, Lele István,
gyártásban használt rostok finomszerkezetére
Szőke András, Pesti Sándor és Dr. Szikla Zoltán urakat.
vonatkozóan, olyan körülmények között, ahogy ezeket az ipari folyamatokban előállítják.
Az Akció következő ülésére Tamperében, Finnor-
szágban kerül sor, 2009. május 4-6 között.
A Munkacsoport tevékenysége a rostok finom- és
nanoszerkezetére koncentrál a leginkább releváns
Prof. Arnis Treimanis, Riga, Lettország
ipari kezelési, elsősorban rostosítási, fehérítési, őrlési
a COST E54 Akció elnöke
és recycling technikákat követően.
First of all I would like to thank the Editorial Board
WG3. The impact of the fine structure of fibres
of the journal „Papíripar" for its kind consent to pub-
on their papermaking properties and their chemi-
lish the proceedings of the EU COST Action E54 „Char-
cal and enzymatic reactivity
acterisation of the fine structure and properties
of papermaking fibres using new technologies"
The scientists and experts of WG3 exchange their
Workshop in Budapest 16-17 October 2008.
experience with respect to the impact of the fine
COST Action E54 started in 2006 and will last till
structure of fibres and their modification on the qual-
December 2010. Now 19 countries have joined the
ity of the paper produced thereof. The emphasis of
Action, and the scientists from several COST non-par-
the work is focused on different questions:
ticipating institutions have expressed their wish to enroll in the project activities.
• what is the impact of the chemical mechanisms
The main objective of the Action E54 is to gener-
at the nano-surface of fibres, i.e. the amount
ate new knowledge on the micro- and nanostructure
and localisation of, for example, residual lignin,
of papermaking fibres and properties required for
hemicelluloses and functional groups, on
efficient and sustainable use of fibres in traditional
major fibre properties and how does this trans-
and new products.
late into paper quality?
It is my pleasure to note that during two years of the
• how will mechanical parameters of fibre sur-
Action's time span several very interesting approaches
faces such as fibre wall thickness, fibre wall
and methods were developed by the Action's partici-
porosity as well as hardness influence the fibre
pants. Part of them is reflected in this journal issue.
properties and thus that of the final paper product?
COST Action E54 comprises three working
The links between the three working groups are
created and have to be maintained since all aspects are important for a better understanding of the fine
WG1: Structure and chemical composition of
structure and chemistry of papermaking fibres.
papermaking fibres after different types of treat-
ments
Finally I would like to cordially thank the local
organizers of the COST Action E54 Workshop in
The objective of the activities of this WG is to
Budapest for their excellent work to guarantee a
• develop new methods for the characterisation
very successful and fruitful meeting. Among them
and assessment, and
I would like to mention Dr. András Víg, Mr. István
• to accumulate and generate new data on the
Lele, Mr. András Szőke, Mr. Sándor Pesti, Mr. Zoltán
fine structure of fibres for papermaking as they
are produced in industrial processes.
Next meeting of the Action takes place in Tam-
The activities of this WG are focused on the fine
pere, Finland, 4-6 May, 2009.
and nano-structure of the fibres after the most rel-
evant industrial treatment techniques, in particular
Chairman of the COST Action E54
pulping, bleaching, beating and recycling.
Prof. Arnis Treimanis, Riga, Latvia.
WG2: Treatment and characterisation of indi-
vidual fibres by microsystem technologies
This WG is focused on the development of new
instruments namely microsystem technologies by which individual fibres can be treated and fibre struc-tures can be investigated at laboratory scale.
is találkozhattam, akikkel a 90-es évek elejétől
egyesületünk PAPÍR-
több mint 10 éven át – Magyarország COST
IPAR c. lapja számára,
képviselőjeként – együttműködhettünk szá-
hogy egy nemzetközi
mos közös kutatásban az életciklusanalízistől
kutatási együttműkö-
az elfolyásmentes papírgyártásig stb, melyek
dés (COST E54 akció)
mindegyikének eredményei alapvető fontossá-
2008 október 16–17-
gúak a papírgyártásban.
iki budapesti üléséről
Magyar olvasóinknak biztosan feltűnik,
hogy az újság szerkezete eltér az utóbbi időben
megszokottól. Az akció és a konferencia beosz-
ban 19 európai ország,
tása szerint munkacsoportonként mutatjuk be
Polyánszky Éva
köztük Magyarország
12 előadás rövidített változatát angolul, illetve
működik együtt, hogy
magyar összefoglalóval azok számára, akiknek
minden partner a saját tudását, műszereit latba
az angol szakszöveg esetleg gondot okozna.
vesse egy közös cél érdekében: ismerjük meg
Ez a szám különleges tehát, de a következő
minél alaposabban a cellulózrost azon tulaj-
is feltehetően is az lesz, mert semmi sem örök,
donságait, meíyek felelősek a papírgyártás
csak a változás.
során a rostok viselkedéséért. A végső cél
Újságunk jövő évi megjelenése – gazdasá-
pedig a minél jobb minőségű papír előállítása.
gi és szakmai okok miatt – nagy valószínűség-
Alapító főszerkesztőnk, Dr. Vámos György
gel sok újdonsággal szolgál majd olvasóink
biztos örömmel venné kézbe ezt az újságot,
mely a klasszikus kutatás nemzetközi együttmű-ködésben létrehozott eredményeit mutatja be.
Polyánszky Éva
Személy szerint számomra külön öröm, hogy
a konferencia során az akció olyan résztvevőivel
Technical Association of Paper and Printing Industry – Budapest
[email protected] – www.pnyme.hu
It is an honour for the journal of our Asso-
research projects, from "life cycle assessment"
ciation „PAPÍRIPAR" to report on the ses-
through "papermaking towards zero liquid efflu-
sion of an international research co-opera-
ent" etc., the results of which are of basic impor-
tion (COST Action E54) held in Budapest on
tance in papermaking.
16-17 October 2008. There are 19 European
Our Hungarian readers will probably realize
countries including Hungary co-operating so
that the structure of the journal differs from that
that each partner contributes his knowledge,
of the ordinary appearance. According to the
instruments serving one common goal: to be
Action and Conference schedule an abbrevi-
more and more familiar with the properties of
ated version of twelve papers will be introduced
the cellulose fibre that are responsible for the
by Working Groups in English and with summa-
behaviour of fibres during papermaking. The
ry in Hungarian for those whom the understand-
final objective is the production of paper of the
ing of the English technical text would cause
possible highest quality.
difficulties. This issue will be thus a special one
Our founder and editor-in-chief, Dr. George
but presumably the next one will be the same
Vámos would be happy to take this journal in
since nothing is eternal but the changes.
his hands demonstrating the results achieved in
The appearance of our journal in the next
international co-operation of a classic research.
year, due to economic and professional reasons
For me personally it is a special privilege that
will, most probably, furnish our readers with lot
during the conference I could meet participants
of novelties.
of the Action whom I had the chance, in my capacity of Hungary's COST-representative, to
Éva Polyánszky
work together over more than ten years from
redactor in chief
the beginning of the nineties, in several joint
MEGHÍVOTT ELŐADÓK
A Dunapack-Hamburger dunaújvárosi gyárának
és az új csomagolópapírt gyártó gép
Dr. Szikla Zoltán Dunapack Zrt. elnökhelyettese
H-1215-Budapest, Duna u. 42.
A Prinzhorn csoport
annak határidős megvalósítása a legjobb ütem-
bemutatása vezeti be az
előadást. Bemutatásra kerül a magyarorszá-gi papírgyártásban és
papírfeldolgozásban való domináns szerepe. Az
Az október 14-i bokrétaünnepségen – ame-
elmúlt évben a csoport
lyen a tulajdonos Thomas Prinzhorn is részt vett
árbevételének több mint
– Galli Miklós, a Dunapack Zrt vezérigazgatója
28%-a származott más
arról is beszélt, hogy a pénzügyi válság közve-
közép- és kelet-európai
tetten érintheti ugyan a céget, de a beruházást
Dunapack leányvállala-
Szikla Zoltán
toktól. Az előadó a Duna-
Braunecker Antal, a társaság értékesítési igaz-
újvárosi telephely jelen-
gatója pedig azt hangsúlyozta, hogy a régióban
legi és jövőbeli struktúráját mutatja be. Itt a Ham-
szükség van egy ilyen kapacitású gyár felépítésére.
burger Hungária Kft. új gépének felfutása után a
Magyarországon ugyanis ma kb. 500.000 tonna
jövő évben 520.000 t/év papírgyártó kapacitás áll
hulladékpapírt gyűjtenek be. Az új gyár évente
rendelkezésre. A 205 millió eurós beruházás szíve
400.000 tonnát hasznosít majd, az ország hulla-
a 7,8 m széles papírgép, konstrukciós sebessége
dékpapír termelésének nagy részét feldolgozza.
1.500 m/perc, barna 70–150 g/m2 hulladékalapú
Bencs Attila projektvezető a bokrétaünnepsé-
csomagolópapírokat fog gyártani. A technológia
gen felidézte, hogy az új üzem alapkövét tavaly
néhány technikai részlete mellett a hallgatóság a
novemberben rakták le, idén szeptemberben pedig
hulladékpapír-forgalomról is kap adatokat.
megkezdődött a gyártó berendezések telepítése, szerelése. A próbaüzemelést jövő év májusára tervezik a szakemberek, 2009. júliusában pedig a
Gyárlátogatás a COST E54 programjában
tervek szerint elindul a papírtermelés.
Ez a fejlesztés az eddigi legnagyobb magán-
A Cost 54 akcióprogram magyarországi ülése
erős környezetvédelmi beruházás Magyarorszá-
során az érdeklődők közel 40 fős csapata meg-
gon, amelynek révén az ország teljesíteni tudja
látogatta a Dunapack Ltd Dunaújvárosi Gyárát.
az Európai Uniós irányelvekben Magyarországra
A látogatás aktualitását az adta, hogy pont az
ülés megnyitását megelőző napokban tartották
Közép-Kelet Európa legnagyobb papíripari beru-
Az új papírgép a felhasználók igényei szerint
házásának bokrétaünnepségét. A gyárlátogatás
különlegesen vékony és könnyű csomagolópapírt
során a látogatók meggyőződhettek a meglévő
fog gyártani – 70 és 150 g közötti négyzetméter-
egység működési körülményeiről, mely éppen
súlyban –, közel nyolc méter szélességű teker-
akkor 100 g/m2-es hullámosított réteget 900
csekben, a termékek széles skálájának biztonsá-
méter feletti sebességgel gyártott, valamint meg-
gos csomagolására.
tekinthették az új papírgép építészeti eredményeit
Az üzem mintegy 280 főnek biztosít munkát
is. Meggyőződhettek arról, ahogy az alábbiakban
közvetlenül, de a beruházás megvalósulása révén
idézett kiadott sajtóközlemény nemcsak reáli-
a térségben további mintegy 600 fő számára oldó-
san ambiciózus célokat fogalmazott meg, hanem
dik meg a foglalkoztatottság.
Paper Industry in Hungary
Dr. Zoltán Szikla
Vice President of Dunapack Paper and Packagings Ltd.
Hungary-1215-Budapest, Duna u. 42.
2 and 3, Schrenz in the range of 70-150 g/qm, a waste paper and a finished good store for
The Prinzhorn Group is an international pri-
approx. two weeks of production. The planned
vate owned paper and packaging producer. Its
production speed reaches 1350 m/min with 7,8
turnover amounted last year to 1094 million €.
m trimmed width. Foundation works started
The production capacities reach 1.150.000 t
in November 2007 and start up is targeted in
containerboard, 565.000 t corrugated prod-
June 2009. The investment costs reach 205
ucts and 183.000 t label paper. The concern
million €. The machinery takes about 60% of
employs 3.779 people in 9 European countries.
that. The main suppliers are
The Dunapack Group's share from the total capacity is 26% in the paper business and
59% in the converting business. In Hungary there are two paper mills totally with 310.000t/a
containerboard capacity and three corrugating
mills with 155.000 t/a capacity.
In 2007 Dunapack's Hungarian share was
above 55% both in the total paper produc-
tion and in the corrugated production. The change of the Hungarian paper and board
The new stores of the mill will have a direct
production and consumption in the last few
connection to the existing systems on both
years is shown in Fig. 1. Fig. 2 shows figures
sides, to the recovered paper side and to the
of the corrugated board industry in the same
automatic roll warehouse. The stock prepara-
tion – with a conventional pulper, high and low
The biggest still running papermachine in
consistency cleaning, fractionating – has ele-
Hungary is the PM3 in Dunaújváros/Dunapack.
ments which have already been approved in the
The annual capacity for 100% recycled cor-
existing mills. The paper machine has a Duo-
rugated medium is 170.000 t. The corrugating machine at that site had a capacity of 61 million
Paper consumption and production in
qm. At the Dunaújváros site of Dunapack 250
people are employed.
Investment of Hamburger Hungaria Ltd
At that site the investment of the new paper-
machine of the Prinzhorn Group is on stream. The project is managed by the subsidiary Hamburger Hungaria Ltd. The main items and targets of the project are a paper machine with 350.000 t/a capacity for Wellenstoff, Testliner
PICTURES FROM THE MEETING
packaging industry. The lightweight container-
Consumption and production of
board production will come nearer to the mar-
corrugated boxes in Hungary
ket where the biggest growth is forecasted for
the common years. The investment involves
environmental goals, too. As the Fig. 3 shows
Dunapack/Hamburger will certainly remain the
biggest user of the domestic packaging waste in
Hungary, even in the case, if the volume of the
collected recovered paper will grow in measure
represened in the figure.
The increase of the collection of recov-
ered paper shows that after a shorter period of import necessity the Hungarian collection
and the closed region can cover the demand
of the new machine on commodity grades. See
Fig. 4.
Recovered paper market in Hungary
The growth of the recovered paper collec-
tion, the containerboard and corrugated board production, consumption was since the mid-dle of the nineties continuous. The increasing demand on modern packaging makes neces-sary to start production of new light weight RCCM grades in the region. The trend and
the must of growing recovered paper collec-tion makes possible to use Hungarian tradition
Recovered paper supply by source
of papermaking at Dunaújváros in economical size with the new PM7 from Hamburger Hun-garia ltd.
Former Masterjet II former, a three nip Nipcoflex press with shoe press nip, combined drying with one and two raw drying cylinder, a Speed Sizer as filmpress.
With this new machine – the only new one
in the last decades in the Central-Eastern-Euro-pean region- a big gap will be closed for the
MEGHÍVOTT ELŐADÓK
Kutatási tevékenység a cellulózrostok
a Papíripari Kutatóintézetben (PKI) Budapest
Hernádi Sándor – Lele István
Papíripari Kutatóintézet Kft.
H-1215 Budapest, Duna u. 57.
Tel: (36-1)-277-37-50, Fax: (36-1)-276-59-21
A rostok szerkezetét vizsgáltuk többek
– Higany poroziméterrel– Letapogató elektronmikroszkóppal (SEM)– Különböző módszerek használatával a
Különböző alapanyagok, valamint papírok
és töltőanyagok pórusszerkezetét vizsgáltuk. Különböző facellulózok és egynyári növények
Hernádi Sándor
Lele István
póruseloszlását és pórusátmérőjét mértük. Majd a papírlapok pórusait osztályoztuk méret szerint.
A Papíripari Kutatóintézetet 1949-ben ala-
Megállapítottuk, hogy a papírlapok három külön-
pították mint önálló kutatási szervezetet, amely
böző pórussal, makropórussal, mikropórussal
a cellulóz- és papírgyártás, nyomtatás és a
és szubmikropórussal rendelkeznek.
kapcsolódó iparágak területén fellépő problé-mákkal foglalkozott.
SEM technikát alkalmaztunk a cellulózros-
Az intézetet 1991-ben magántulajdonú
tok felületének vizsgálatához:
Jelenleg az intézet a következő szolgálta-
– különböző kezeléseket, illetve
tásokat nyújtja a cellulóz- és papíripar, papír-
– rostfrakcionálást követően.
feldolgozás és nyomtatás területén működő vállalatok és intézmények számára:
Példaként néhány képet mutatunk az öre-
gített papírfelületre és papírlapokra, melyeket
– Kutatás és fejlesztés
Bauer McNett frakcionátoron frakcionált rostok-
– Vizsgálatok, szakértői mérések
ból állítottunk elő.
– Műszaki és tudományos információs szol-
A rost-víz kölcsönhatást
– Statisztikai és piaci információs szolgál-
– Klemm szerinti vízfelvétellel
– Elméleti és gyakorlati oktatás, részvétel
– Vízbe történő bemerítés utáni vízfelvétellel
főiskolai és egyetemi képzésben
– A papír felületére ejtett víz felszívódásával
– Szabványosítással kapcsolatos munkák-
– PDA készülékkel mért, rövid ideig tartó
ban való részvétel
in the field of fine structure
of cellulose fibres in PRI
Alex Hernádi and Istvan Lele
Paper Research Indrustry, Budapest
H-1215 Budapest, Duna u. 57.
Tel: (36-1)-277-37-50, Fax: (36-1)-276-59-21
Results and discussion
History of the Hungarian pulp and paper
Foundation of the research institute: 1949,
One method for measurement of porosity of
its transformation into private company: 1991.
fibres and paper sheets is the mercury porosim-
Based on its almost 60 years experience the
etry. The clue of this method is that the mercury
Hungarian Paper Research Institute offers its
does not wet fibres and under pressure fills their
services for companies and institutions, oper-
ating in the pulp and paper, paper converting, packaging, printing and related industries, as
p = –2γ·cosθ/r
well as in trade and education.
there γ – surface tension of mercury,
We offer the following services:
θ – contact angle of mercury on the
– research and development in the area of
pulp and paper production, paper and board
Pore volume and pore size distribution can
converting, gluing, printing, environmental
be calculated from capillary resistance and
protection, collection and service of market,
outer pressure.
trade, production and technical data.
A Carlo Erba mercury porosimeter meas-
– tests, certifying measurements
ures the total pore volume in the range 0,1 – 100
– service of technical and scientific information
cm3/g. The applied pressure during measure-
– service of statistical and market information
ment changes between 104 – 108 Pa.
– theoretical and practical training, voca-
tional education
Average pore radii of different fibres are
– contribution to the formation and introduc-
given in Table 1.
tion of standarts
• The pore structure of paper [1]Paper itself contains a cluster of voids of
different types and origin. The void system is incorporated in and amongst the components
The structure of fibres was investigated by
of solid network. Different methods can be used to investigate the effect of raw materials,
– Mercury porosimetry
rate of delignification, mechanical treatment
– Scanning electron microscopy
(beating and pressing) on the pore volume
– Studying fibre- water interaction using dif-
and pore radii. It was established that the cel-
lulose fibre has at least three different pore
system depending on the form of existence
Averge pore radii, µm
– submicropores, which exist only in swollen
Black pine
state between lamellas of microfibrilles,
– micropores, which are in the fibre wall and
in the lumen and in pitch hole etc.,
Bleached chemical
– macropores which are the interfibre voids
existing only in paper sheet and disap-
pearing in pulp slurry condition
SCANNING ELECTRON MICROSCOPY
Bleached chemical
Scanning electron microscopy (SEM) was
used to investigate the surface of cellulose
– different treatments,
Bleached chemical
– fractionating of fibres.
Some pictures can be seen on the next
Table 1. Pore radii
paper from 1797
paper from 1609
Fig. 1.: SEM pictures of ancient papers
Fig. 2.: SEM picture of different fractions of OCC fibres
Fig. 3.: Water take-up of enzimatically treated aged paper
Fig. 5.: Some curves of short time wetting on different paper
PRI as an industrial applied research institu-
tion uses special methods of research for the solution of industrial problems
– Beside this PRI also takes role in aca-
demic research and in the education
– Staff of the institute is involved into the
education of students and PhD students
– Scientists of the institute participate on
national and international conferences and symposia
Fig. 4.: Measuring principle of PDA device
STUDYING FIBRE-WATER INTERACTION BY
[1] Hernádi S.: A papírban levő pórusok
szerkezete, azok mérete és meghatáro-
– water take up by Klemm Fig. 3.
zásának módja (Structure of the pores
– water take up after immersion into water
– suction of water dropped onto the paper
Papíripar 47 (1) 11-15 (2003)
– short time wetting of paper measured by
[2] Hernádi S. – Lele I. – Rab A.: Különböző
PDA device (Fig. 4)
szekunderrostok iniciál nedvesedése és lapképző tulajdonságai közötti össze-
Results of short time wetting of paper meas-
függések vizsgálata (Initial wetting of
ured by PDA device are shown in Fig. 5. [2]
different secondary fibres)
Papíripar 47 (4) 126-130 (2003)
MEGHÍVOTT ELŐADÓK
és a módszer használata fa, farost, szálasanyagok
és ezek származékainak vizsgálatára
Alumna – Johannes Kepler Universität Linz, Austria
A pirolízis gázkroma-
zonyítottuk, hogy a pirolízis körülményei között
a ligninből tipikusan keletkező benzaldehidek a
metria (Py-GC/MS) egy
jelenlévő TMAH hatására Cannizzaro reakcióban
gyors és rendkívül haté-
vesznek részt, ahol az ekvimolárisan keletkező sav
kony módszer komplex
és alkohol párosból a benzoesavak rögtön teljes
szerkezetű szintetikus, s
mértékben metileződnek észterekké, az alkoholok
főleg természetes poli-
pedig kémiai szerkezetüktől függően csak részben
merek analízisére, vala-
alakulnak át metil-éterré.
mint többkomponensű
A cellulóz és hemicellulózok hagyományos
összetett rendszerek, pirolízise rendkívül sok terméket eredményez, ami mint pl. a papír is, vizsgá-
„fingerprint" (ujjlenyomat) jellemzésre nemigen alkal-
latára. A termikus vagy a
mas. A TMAH-ot Fabbri alkalmazta először mono-,
Tánczos Ildikó
reaktív pirolízis termékeit
di- és poliszacharidok pirolízisében. A hagyomá-
nyos pirolízistől eltérő és kevesebb terméket kapott,
gével választjuk szét, s tömegspektrumuk alapján
közöttük a cukrok lúgos reakcióira jellemző szacha-
azonosítjuk. A bomlástermékek analíziséből indirekt
rinsavak metilezett származékait. Mi uronsav THM
módon kapunk információt az eredeti mintáról.
analízisének alkalikus bomlásra jellemző származé-
Erősen poláris anyagok pirolízisekor gyak-
kát találtuk és azonosítottuk a pirogramban.
ran a keletkező termékek is erősen polárosak,
Az analitikában, különösen a lignin hidrolízisé-
melyek nehezen jutnak át a pirolizátorból a
ben jól bevált TMAH-t technológiai folyamatokban
gázkromatográfra, s direkt kromatográfiás analízi-
is kipróbáltuk. A fafeltárásban a nátrium-hidroxid
sük is igen problematikus. Mellékreakcióként pedig
helyett alkalmazva, ugyanolyan moláris koncentrá-
dekarboxileződés fordulhat elő.
ció és hőfok mellett, jelentősen alacsonyabb kappa
Ezen hátrányok kiküszöbölésére vezette be
szám és könnyebb fehéríthetőség volt elérhető
Challinor a 90-es években a tetrametil-ammó-
a cellulóz minőségének és hozamának csökke-
niumhidroxid (TMAH), mint reaktív ágens hasz-
nése nélkül. Kraft feltárásban TMAH megfelelő
nálatát a pirolízisben. A TMAH segíti a nagy
arányú alkalmazása NaOH helyett lehetővé teszi
molekulájú anyagok lúgos hidrolízisét és közepes
a szulfiditás csökkentését, miközben a kitermelés
metilező hatása révén segíti a bomlástermékek
akár nőhet is. Lo-solids® folyamatokban rögtön az
kromatográfiás analízisét. A módszer leginkább
első, az impregnációs fázisban alkalmazva mutat-
elterjedt megnevezése: termikusan segített hidrolí-
kozik meg előnyös hatása. A TMAH cellulózra gya-
zis és metilezés – rövidítve THM.
korolt hatásának vizsgálata során megállapítottuk,
Mi a linzi egyetemen vizsgáltuk a TMAH ana-
hogy 2 mol/l koncentráció fölött jóval erősebben
litikai és technológiai alkalmazásának bizonyos
duzzasztja a cellulózt, mint a NaOH, ugyanakkor a
cellulóz késlelteti a TMAH termikus bomlását.
Az analitikai alkalmazásban tanulmányoz-
A Py-GC/MS technika rendkívül egyszerű
tuk különböző fa-, lignin és cellulózminta, vala-
módszernek mutatkozott fa- és cellulózszárma-
mint számos modellvegyület reaktív pirolízisét.
zékok analízisére. Újonnan kidolgozott eljárás-
Magyarázatot találtunk a fa- és ligninminták THM
sal, izopropenil-acetát segítségével acetilezett
pirogramjaiban korábban megfigyelt intenzív ben-
vagy acilezett származékok acilezési fokának, a
zoesav-metilészter származékok megjelenésére.
szubsztituensek arányának mintaelőkészítés nél-
Modellvegyületekkel végzett kísérletekkel bebi-
küli gyors meghatározását teszi lehetővé.
Pyrolysis-Gas Chromatography-Mass Spectroscopy
and its use for the analysis of wood, pulp, fibers
and their derivatives
Alumna – Johannes Kepler University Linz, Austria
tion of complex structures, both synthetic and natural polymers even in different composites (for
The Pyrolysis Gas-Chromatography Mass-
example wood, wood composites, fibres, paper
Spectrometry is a very quick and high-power
with additives, etc.).
method for the analysis of complex structure of
Very small amount of samples are needed
wood, fibres and papers. The use of tetramethyl-
and in a very short time characteristic fingerprints
ammonium hydroxide (TMAH) in the pyrolysis sig-
can be obtained from the samples without being
nificantly increases the efficiency of the method.
isolated their components.
The thermally assisted hydrolysis and methylation
However, pyrolytic analysis of highly polar sam-
(THM) was applied in the analysis of different
ples may lead to incorrect conclusions if highly polar
wood and lignin samples as well as for lignin model
products are evolved which are difficult to transfer
compounds. The origin of benzene carboxylic acid
from the pyrolizer to the GC and are almost impos-
methyl esters in the pyrograms of lignin and wood
sible to chromatograph. Furthermore, as unwanted
was declared. On the field of carbohydrates the
thermal reaction decarboxylation may occur.
pyrolysis of uronic acid was emphasized. TMAH,
the chemical agent of the reactive pyrolysis, was
At the beginning of the nineties John Challinor
applied also in technical processes as pulping of
[2] suggested the usage of tetramethylammonium
wood and swelling of cellulose. The Py-GC/MS
hydroxide (TMAH) as reactive agent in the pyroly-
proved to be very useful in the analysis of vari-
sis to avoid the above mentioned limitations. The
ously acylated wood samples, too.
TMAH is a strong base and a moderate methylat-
ing agent (Fig. 1).
The naming of the reactive pyrolysis method is
not uniform. It is referred in the literature as:
In spite of the great development in the analyt-
ical equipments, the analysis of natural materials
• Pyrolysis in the presence of tetramethyl-
as wood and fibres is difficult due to their complex
ammonium hydroxide
structure and the high molecular weight of the
• Pyrolysis-methylation GC/MS
components. Instead of a direct analysis, the analysis of their pyrolytic decomposition products provides an alternative possibility.
The products evolving at the pyrolysis will be
separated by gas chromatograph and analyzed
by mass spectrometry (Py-GC/MS). The original
structure will be concluded from the decomposi-
tion products. The modern multifunctional pyrolysis
systems enable evolved gas analysis, flash pyroly-
sis, reactive pyrolysis, thermal desorption and
double-shot analysis [1].
The Py-GC/MS is a quick and high-power
method especially for the chemical characteriza-
Fig.1. Tetramethylammonium hydroxide
• Thermochemolysis
many years the origin of these α-carboxylic acids
• TMAH thermochemolysis and
was not clear.
• Thermal Hydrolysis and Methylation (THM)
Martin and his co-workers [4] ascribed the
presence of the benzene carboxylic acid methyl
Advantages of the THM analysis:
esters first of all to the technique since it avoids the decarboxylation, on the other hand to oxida-
– Alkaline media helps the hydrolysis of poly-
tion of some structural components of lignin.
Hatcher and his colleges [5] supposed that
– Fewer decomposition products – but differ-
TMAH assists in the production of these acids but
ent from the conventional pyrolysis
they did not find a possible reaction mechanism to
– The product yields are higher
explain the presence of them.
– Lower temperature is enabled due to the
chemical hydrolysis
We succeeded to prove and demonstrate [7,8]
– Pyrolytic decarboxylation may be avoided
that benzene carboxylic methyl esters can be pro-
– The evolved free carboxylic acids will be
duced from benzaldehydes that are typical side
chain cleaved products in lignin pyrolysis. Benzal-
– Organic alcohols may be also methylated
dehydes evolved in the pyrolysis (as aldehydes hav-
– The methylated products are in most cases
ing no α-hydrogen) in the presence of TMAH can
better to characterize and give sharper GC
undergo to a Cannizzaro reaction producing in equi-
signals due to their increased volatility
molar amounts the corresponding benzylic alcohols and benzene carboxylic acids – that is immediately
The method is sensitive to the parameters of the
a salt of the acid. Under the circumstances of the
analysis: temperature, TMAH/sample ratio, solvent
pyrolysis there is a second step in the reaction, the
of TMAH (methanol or water), sample preparation
methylation of the evolved products (Fig. 2).
(incubation time of TMAH/sample mixture, etc.).
In the lignin pyrograms – also from different
researchers - beside a given benzaldehyde the
Analytical use of TMAH in reactive pyrolysis
corresponding products of the Cannizzaro reac-tion can be really observed. To determine the
THM analysis of wood
importance of this reaction during the pyrolysis three factors must be considered:
All components of wood have been already
1. the yield of the Cannizzaro type reaction of
the evolved aldehydes
1. most studied is the THM analysis of lignin
and the easiest to identify the decomposi-
tion products [3,4,5]
analysis of the cellulose and hemicellu-
loses: the decomposition pattern is more
complicated and difficult to identify the
decomposition products. Sensitive to the
sample preparation [6].
3. Less work has been done with the extrac-
THM analysis of lignin
In contrast to the conventional pyrolysis the
THM analysis of wood or lignin resulted always in relatively high amount benzene carboxylic acid methyl esters. They were absent in conventional pyrolysis. Mono-, di- and trimethoxybenzenecar-
Fig. 2.: Cannizzaro reaction of benzaldehydes evolved in the
boxylic acid methyl esters were detected. For
pyrolysis of lignin
2. the yield of the methylation by TMAH
two significant new peaks [9]. Applying the gener-
3. detectability of all compounds in the Py-GC/
ally accepted reaction mechanism of the effect of
strong bases on reducing sugars to glucuronic acid we assigned the new peaks as epimers of the cor-
Investigations with different aldehydes com-
responding permethylated deoxy glucaric acids.
mon in the lignin pyrolysis showed that the dis-proportionation is strongly effected by the sub-stituents and the position of substituents in the
Technical use of TMAH in delignification
aromatic ring, for example OH-group in the p-
and swelling
position has a blocking effect – as in the case of
vanillin [7].
Delignification of wood using TMAH instead of
NaOH – Quatam process
THM analysis of cellulose and hemicelluloses
At the analysis of wood or pulp, the decompo-
The pyrolytic analysis of cellulose and hemi-
sition products of lignin are dominant in the THM
celluloses is more complicated. Fabbri [6] was
pyrogram. We thought TMAH had to be a very
the first who explored the behaviour of various
good agent in the alkaline hydrolysis of lignin.
monosaccharides combined with 1,4-linked car-
So we tried it as a reactive agent in wood pulp-
bohydrates. As characteristic products of mon-
ing instead of sodium hydroxide: in Soda, Sulfite,
osaccharides, such as xylose, glucose, mannose,
Kraft and Lo-solids® processes.
arabinose, C5 and C6 meta-saccharinic acid
The experiments in laboratory and later in semi-
methyl esters were identified under the products.
pilot plants confirmed our assumption [10,11,12] The
In contrary to the monosaccharides, iso-sac-
tetramethylammonium hydroxide showed a signifi-
charinic acid methyl ester isomers were detected
cantly better pulping effect than the commonly used
as primary products of the glycosidically linked
sodium hydroxide both in hardwood and softwood
pulping under the same circumstances. In Kraft
The glucuronic acid groups are important con-
pulping the sulfidity could be drastically reduced
stituents of the xylan backbones of hemicelluloses.
without a decrease in the pulp quality. In Lo-solids®
We studied the thermochemolysis of uronic acid,
process the highest efficiency could be achieved if
too (Fig. 3). In the pyrogram we could observe
TMAH was used in the impregnation stage.
1: 2,4-dimethoxybutanoic acid methyl ester2/3: C5 methylated metasaccharinic acid methyl
4:* unknown 5/6: we assigned as tri-O-methylated-3-deoxy-
glucaric acid dimethyl esters
Fig.3.: THM pyrogram of glucuronic acid compared to the those of xylose and xylobiose [9]
Fig. 4.: Kappa numbers of pulps obtained in Soda and Quatam process under the same circumstances.
Where may be the differences between the
decay of TMAH. The temperature range of the
effect of NaOH and TMAH? Both physical and
decomposition is shifted from134°C to about
chemical factors must be considered as size
of the cation, hydration, solvation, penetration, adsorption, desorption as well as degradation reactions of lignin and hemicelluloses, second-
Py-GC/MS analysis of acylated wood
ary/condensation reactions and methylating effect
of TMAH [11].
The acetylation of wood using isopropenyl
acetate (IPA) is a new technique, developed in
Using different quaternary ammonium hydrox-
the Universität Linz [15]. The acylation process
ides it is obvious that the pulping effect is decreas-
was extended also for products containing higher
ing with increasing molecular weight (increasing
carboxylic acid rests [16] (Fig. 5).
alkyl chains in the molecule) in the sequence
Py-GC/MS is a high-performance method for
TMAH > tetraethylammonium hydroxide > benzyl-
the analysis of wood derivatives, especially in our
trimethylammonium hydroxide [13].
case for the analysis of acylated wood containing different carboxylic groups. Not only the grade of
Swelling of cellulose
TMAH proved to be a more effective swell-
ing agent of cellulose than NaOH. The differ-
ence between their swelling effects starts to be
significant at about 2 mol/l concentration [14].
This result was assigned to the large size and
non-polar part of TMAH able to penetrate into the
non-polar sheets of cellulose, furthermore, to the
abnormally high activity coefficient of TMAH in
aqueous solution (Fig. 4).
The decomposition pattern of TMAH itself
is also changed. TMAH bounded on the cotton fabric contains hardly crystal water anymore and the cellulose stabilizes TMAH. The molecu-lar interaction between TMAH and cellulose results in formation of cellulose-tetramethylam-monium: CellO- [N(CH ) ]+ which retards the
Fig. 5. Acylation of wood with IPA+carboxylic acid mixture
acylation but immediately the ratio of the different
[5] P. G. Hatcher, R .D. Minard, Org. Geo-
carboxylic groups in the samples could be quanti-
chem. 23 991 (1995)
[6] D. Fabbri, R. Helleur, J. Anal. Appl. Pyrol-
ysis, 49 277 (1999)
[7] I. Tanczos, K. Rendl, H. Schmidt, J. Anal.
Appl. Pyrolysis, 49 319 (1999)
[8] I. Tanczos, M. Schöflinger, H. Schmidt, J.
Many thanks for the collaboration in these
Balla, J. Anal. Appl. Pyrolysis 42 21 (1997)
works to the graduants and doctoral candidates of
[9] I. Tanczos, C. Schwarzinger, H. Schmidt,
the Institute for Chemical Technology of Organic
J. Balla, J. Anal. Appl. Pyrolysis 68-69,
Materials in the JKU Linz, Austria: K. Rendl, M.
Schöflinger, A. Pfeiffer, C. Rogl, C. Schwarzinger,
[10] I. Tanczos, H. Schmidt, J. Wood Chem.
R. Putz, B. Brüstle; to the Wood K plus Austria;
and Techn., 22 (4) 219 (2002)
to the cooperation partners in the University of
[11] I. Tanczos, R. Putz, H. Schmidt, 5th EWLP
Technology and Economy, Budapest, Hungary: J.
Aveiro, Portugal (1998) Proceedings 581
Borsa, J. Balla, Gy. Pokol.
[12] C. Rogl, I. Tanczos, J. E. Jiang, B. Stromb-
erg, K. Henricson, H. Schmidt, 6th EWLP Bordeaux, France (2000) Proceedings
[13] A. Pfeifer, I. Tanczos, H. Schmidt, Lenz-
[1] The Frontier Multi-Functional Pyrolysis
inger Berichte 79 88 (2000)
System 2020iD, www.frontier-lab.com/
[14] I. Tanczos, J. Borsa, I. Sajó, K. László,
Z. A. Juhász, T. Tóth, Macromolecular Chem-
[2] J. M. Challinor, J. Anal. Appl. Pyrolysis, 16
istry and Physics 201 (17) 2550 (2000)
232 (1989) and 18 233 (1991)
[15] Verfahren zur Acetylierung des Holzes
[3] J. M. Challinor, J. Anal. Appl. Pyrolysis, 61
WO 2004/048417 A1
[16] Verfahren zur Acylierung eines insbeson-
[4] F. Martin, J. C. del Rio, F. J. Gonzalez-
dere Cellulose und/oder Hemicellulose
Vila, T. Verdejo, J. Anal. Appl. Pyrolysis,
und/oder Lignin aufweisenden Materials
und damit erhältliches Material A 9/2005
1. MUNKACSOPORT – Különböző kezelések hatása a papíripari rostok szerkezetére és kémiai összetételére
fehérítetlen és fehérített eukaliptusz kraftcellulóz
rostok felületi rétegeinek elemzése
Arnis Treimanis1 – Antje Potthast2 – Ute Henniges2 – Thomas Rosenau2
Uldis Grinfelds1 – Tatjana Bikova1 – Marite Skute1
1Állami Fakémiai Intézet
27 Dzerbenes Str., Riga LV 1006, Lettország
Levelező szerző [email protected]
2Természeti Erőforrások és Alkalmazott Élettudományok Egyeteme
Muthgasse 18., A-1190 Bécs, Ausztria
Levelező szerző [email protected]
A fasejtfal középső
va. A (hetero)aromás vegyületek (furanoidok/
lamellájának és elsődle-
furángyanták) és oxipoliszacharidok tartalma is
ges falának maradvány-
sokkal magasabb volt a becslések szerint a felületi
frakcióban. Fehérített frakciók esetében a teljes
ják a cellulózrost felületi
NaOH-os oldhatóság csökkent, és 25 súlyszázalé-
rétegének összetételét.
kot tett ki a rost felületi rétegei, és 15%-ot a rostfal
Várható, hogy ez hat
fő része esetében. A felületi komponensek frakci-
a cellulózrostok fehé-
ókról történő abszorpciójának csökkenése a teljes
ríthetőségére is. Jelen
spektrális tartományon belül megfigyelhető volt.
munkánk célja az volt,
A fluoreszkáló jelölés és GPC-MALLS meg-
hogy hidromechanikai
mutatták, hogy a felületi réteg frakciójának mole-
Prof. Arnis Treimanis
kuláris súlyeloszlása lényegesen különbözött a
kal szétválasszuk az
tömbfázisú rostokétól, leginkább az alacsony
eukaliptusz fehérítetlen kraftcellulóz rostjainak
molekulasúlyú frakciókban. A belső réteg frak-
felületi rétegeit, majd a szétválasztott (lehámozott)
ciói megegyeztek a tömbfázisú rost molekuláris
rétegeket enzimes fehérítéssel dolgoztuk fel, a
súlyeloszlásával. Ugyanez volt igaz a molekula-
peroxid – xilanázkezelés – lúgos extrakció – per-
súlyra és a karbonilcsoport-tartalomra. A felüle-
oxid P1-X-E-P2 sorrendnek megfelelően. Mind a
ti rétegekből nyert frakcióra gyakorolt fehérítési
fehérítetlen, mind pedig a fehérített rostfalfrakciók
hatás nagyon hangsúlyozott volt. Fehérítés után
összetételét UV/látható spektroszkópiával és az
a molekulasúly csökkent, és a karbonilcsoportok
oxidált cellulóz funkciós csoportjainak fluoresz-
pedig, ahogy ez várható volt, az összes vizsgált
káló jelölésével elemeztük, melyet GBC-MALLS
mintában növekedtek. A rostok felületi részét
azonban még komolyabban érintette. A felületi
Annak érdekében, hogy a maradék lignin és
rétegben a karbonilcsoport háromszorosára nőtt,
oxipoliszacharidok által előidézett UV-abszorp-
összehasonlítva a belső rétegben vagy a tömbfá-
cióképesség között különbséget tudjunk tenni,
zisú rostban történő kétszeres növekedéssel.
0,5%-os és 10%-os lúgos extrakciót alkalmaztunk
A rostfalfrakciók kémiai összetételében vég-
NaOH-dal. A teljes NaOH-os oldhatóság fehé-
bemenő meglehetősen radikális változások elle-
rítetlen felületi rétegekre 40 súlyszázalék volt,
nére az elkülönített felületi rétegek ISO-fehérsége
a rostfalak fő részére pedig 19%. Az UV spekt-
sokkal alacsonyabb maradt a rostok fő részéhez
rum megmutatta, hogy a lignin és hexénuronsav
viszonyítva. Ez 50%-os ISO-fehérséget jelentett
tartalom 3-4-szer magasabb a rostok felüle-
a rostok fő részeinek 67%-os ISO-fehérségéhez
ti rétegeiben az átlagértékekkel összehasonlít-
WORKING GROUP 1. – Structure and chemical composition of papermaking fibres after
different types of treatment
Analysis of surface
layers of mechanically peeled unbleached and
bleached eucalyptus kraft pulp fibres
Arnis Treimanis1 – Antje Potthast2 – Ute Henniges2 – Thomas Rosenau2
Uldis Grinfelds1 – Tatjana Bikova1 – Marite Skute1
1State Institute of Wood Chemistry
27 Dzerbenes str., Riga LV 1006, Latvia
corresponding author [email protected]
2University of Natural Resources and Applied Life Sciences
Muthgasse 18., A-1190 Vienna, Austria
corresponding author [email protected]
from the surface layers was very pronounced. After bleaching molecular weight and carboxyl
The objective of the present work was
group content are decreased in all analyzed
to separate the surface layers of eucalyptus
samples. Again, the surface-layer fraction
unbleached kraft pulp fibres by hydromechani-
exhibits a different behaviour than bulk sample
cal peeling techniques and to proceed with
and inner-layer fractions.
enzyme-aided bleaching of the separated lay-
In spite of the rather exhaustive changes in
ers according to the sequence peroxide – xyla-
the chemical composition during the fibre wall
nase treatment – alkaline extraction – peroxide
fractions, the ISO brightness of the isolated sur-
P -X-E-P . The composition of both unbleached
face layers remained much lower as compared
and bleached fibre wall fractions was analysed
to the main part of fibres. It provided 50% ISO
by UV/Vis spectroscopy and fluorescence label-
as compared to the 67% ISO brightness for
ling of oxidized cellulose functionalities followed
main part of fibres.
by GPC-MALLS.
UV spectra revealed the content of lignin
and hexenuronic acids to be 3-4 times high-
er in fibre surface layers as compared to the average values. The content of heteroaromatic
It is established by several researchers
compounds (furanoids / furan resins) and oxy-
that the residual constituents of middle lamella
polysaccharides was also estimated to be much
and primary wall of wood cell walls affect the
higher in the surface fraction. For the bleached
composition of pulp fibre surface layers. It
fractions the decrease of the absorbance of the
is expected that this translates into the pulp
components from surface fractions occurred
fibres' bleachability. In order to perform blea-
over the whole spectral range.
ching trials directly with separated fibre sur-
Fluorescence labelling and GPC-MALLS
face layers (P and S ) and the main part of
showed that the molecular weight distribution of
the secondary wall (S and S ) as well as with
the surface-layer fraction differed significantly
intact pulp fibres, hydromechanical peeling of
from that of the bulk fibre, mostly in the low
eucalyptus unbleached kraft pulp fibres was
molecular weight fraction. The inner-layer frac-
accomplished. Unbleached fibres (the sample
tions equaled the molecular weight distribution
for integrated analysis by participants of the
of the bulk fibre. The same held true for molecu-
COST Action E41) were acquired from the
lar weight and carbonyl group content. The
industrial digester before oxygen delignifica-
impact of bleaching on the fraction obtained
WORKING GROUP 1.
Materials and methods
total NaOH solubility was 40% by weight for unbleached surface layers and 19% for the
The hydromechanical peeling techniques
residual part of the fibre wall. Fluorescence
was applied to separate the surface layers of
labelling of oxidized cellulose functionalities fol-
eucalyptus unbleached kraft pulp fibres [1].
lowed by GPC-MALLS was performed accord-
The peeling of the surface material was moni-
ing to [2],[3].
tored by „Lorentzen&Wettre Fiber Tester" and digital microscope „Leica DM5500", separa-tion of the fractions was done by wet fibres
Results and discussion
shaker „Retzsch AS200" following by centrifu-gation and freeze-drying. The peeling process
In order to elucidate the distinctions in the
was interrupted before the fragmentation of the
chemical composition of the fractions before the
fibres had started. The degree of the exposure
bleaching, the UV-spectra (Fig. 1) and the 1st
of the secondary wall S layer usually reaches
derivative of the spectra were analysed. When
30-50% as a consequence of the suspension
0.5% NaOH solution is applied, the absorbance
of the procedure. Separated fibre wall frac-
values at 218, 290, 330, 350, 386 and 390 nm
tions, i.e., rather clean surface layers (P+S )
are attributed to lignin. Strong absorbance of
and conditionally the main part of secondary
the alkaline extract from fibre surface layers
layer (S +S ), were analysed by standard TAPPI
at 245 nm and weaker UV-absorbance at 244,
methods and subjected to the enzyme-aided
254, 266 and 276 nm for the alkaline extract of
bleaching of the isolated layers according to
the fraction enriched in S and S layers indicate
the sequence peroxide – xylanase treatment
the presence of the heteroaromatic compounds
– alkaline extraction – peroxide P -X-E-P . The
of the furanoid (pyranoid) type. In 10% NaOH
composition of both unbleached and bleached
extracts, the absorbance at 235 is attributed
fibre wall fractions was analysed by UV/Vis
to hexenuronic acids (HexA). From UV spec-
spectroscopy. In order to differentiate the UV-
tra analysis we conclude that the content of
absorbance derived by residual lignin and oxy-
lignin and hexenuronic acids is 3-4 times hig-
polysaccharides, sequential alkaline extraction
her in fibre surface layers as compared to the
with 0.5% and 10% NaOH was applied. The
average values. The content of heteroaromatic
Fig. 1. The UV-spectra of the alkaline extracts from unbleached P-S (upper curves) and S -S fractions (lower curves)
(A – 0.5% NaOH; B – 10.0% NaOH).
WORKING GROUP 1.
compounds (furanoids / furan resins) and oxy-
main part of the fiber walls, the S -S layers,
polysaccharides is also estimated to be much
has lost most of the easily accessible fraction
higher in the surface fraction.
of hemicelluloses and HexA during the bleach-
For the bleached fractions the total NaOH
ing procedure. It is indicated by the decrease
solubility decreased and was 25% by weight for
of the absorbance around 235 nm. At the same
the fibre surface layers and 15% for the main
time an increase of the absorbance at 235 nm
part of fibre wall. The decrease of the absor-
in the case of the polyoses from S -S layers
bance of the components from surface fractions
soluble in strong alkali points to some increase
occurred over the whole spectral range. The
of HexA at the bleaching conditions used (no
absorbance drop at 218 nm and 250 nm by
acidic stage).
45% and 63%, respectively, in the 10% NaOH
The brightness values of the eucalyptus
extract of the surface P-S layers indicates the
kraft pulp separated surface (P-S ) and main
destruction of the heteroaromatic compounds
secondary wall layers as well as whole fibres
possibly incorporated in the furan resins. The
after bleaching were measured [Fig. 2]. In spite
decrease of absorbance at 280-300 nm and
of the rather exhaustive changes in the chemical
around 340-360 nm indicates the elimination
composition during the fibre wall layers bleach-
of both carbonyl groups and double bond con-
ing, the ISO brightness of the fibre surface
jugated structures in the surface layers. The
layers remains much lower as compared to the S -S layers. It makes up 50% ISO as compared
to the 67% ISO brightness for both secondary wall layers and whole fibres.
The molecular weight distribution of the P-S
layer shows a distinct and well separated hemi-
cellulose peak (Fig. 3 left). In the unbleached
samples the amount of carboxyl groups, which
corresponds predominantly to the uronic acid
moeities in the xylan of the eucalyptus pulp
used is comparable in the whole sample and
the S -S layer (Fig. 3 right). Interestingly, the
free uronic acid content in the surface layer is
Fig. 2. Brightness values for eucalyptus kraft pulp fibrer and
significantly lower compared to the S -S layer.
separated fibre wall layers.
A possible explanation is the engagement of the
Fig. 3. Molecular weight distribution of bleached (left) and unbleached (right) pulps In addition, the figure on the right shows the
distribution of carboxyl groups in relation to the molecular weight.
WORKING GROUP 1.
Whole pulp
P-S layer
S -S layer
*Determination of carbonyl values in bleached samples was not possible due to fluorescence quenching of lignin.
Table. 1: Amounts of carboxyl and carbonyl groups in unbleached and bleached samples
uronic acid group in lignin-carbohydrate com-
plexes, which corresponds well to the increased
UV activity within the surface layer (cf. Fig.1). In
[1.] Treimanis A.: Advanced traditional meth-
the mild labeling protocol the ester linkages are
ods of analysis of fibre surface layers – a
not cleaved and only free uronic acid groups
powerful tool in research of lignocellu-
are labeled. The bleached samples showed a
losics. La Chimica e l'Industria 88 (2)
significantly higher carbonyl group content in
72-75 (2006).
the surface layers than in the bulk sample and in the S -S layer, also indicating the presence
[2.] Bohrn, R., Potthast, A., Schiehser, S.,
of a more complex chemical structure.
Rosenau, T., Sixta, H., Kosma, P. : The FDAM method: Determination of car-boxyl profiles in cellulosic materials by
combining group-selective fluorescence labeling with GPC. Biomacromolecules,
• Composition of the papermaking (pulp)
7 1743-1750 (2006).
fibres surface layers differs from that of the secondary wall.
[3.] Röhrling, J.; Potthast, A.; Rosenau, T.;
• In spite of rather exhaustive changes during
Lange, T.; Borgards, A.; Sixta, H., Kosma,
bleaching, ISO brightness of the isolated
P.: A novel method for the determination
surface layers remained much lower.
of carbonyl groups in cellulosics by fluo-
• Carboxyl groups in surface layers are
rescence labeling. Part 2: Validation and
engaged in lignin-carbohydrate com-
Biomacromolecules 3 969-975 (2002).
Technical Association of Paper and Printing Industry – Budapest
[email protected] – www.pnyme.hu
Újonnan kifejlesztett módszer
az egyedi rost rugalmasságának méréséhez
R. Eckhart1 – M. Donoser2 – W. Bauer1
1Papír, Cellulóz- és Rosttechnológiai Intézet – IPZ Grazi Műszaki Egyetem
Kopernikusgasse 24/II A-8010 Graz, Ausztria
2Számítógépes Grafikai-és Vizualizációs Intézet-ICG
Grazi Műszaki Egyetem
Új módszer került
Az áramlási mezőt az Áramlástani és Hőát-
kifejlesztésre az egye-
adási Intézetben szimulálták folyékony anyag
di rost rugalmasságá-
(FLUENT) alkalmazásával. A sebességkompo-
nensek x és y irányban, valamint gradienseik 30
nek meghatározására
m-es térbeli felbontással ismertek.
szuszpenzióban. A
Erre a szimulációra alapozva elérhetők azok
vízben szuszpendált a hidrodinamikus feltételek, melyeknek a rostok rostokat egy plexiből
az áramlási mezőben ki vannak téve. A rost rugal-
készült átlátszó áram-
massági modulusban kifejezett rugalmasságának
lási cellában nyíróerők-
kiszámításához a folyadékáram miatt a rostra
nek tették ki. A rostok
ható valódi erők szükségesek. Ezeket az erőket
Rene Eckhart
a rost és a folyadék közötti sebességkülönbség
léséhez transzmisszi-
határozza meg. Ez a sebességkülönbség nem
ós fénymikroszkópon alapuló nagysebességű
számítható ki egyszerűen, mivel a folyadékáram-
képelemzési rendszert használtak. A maxi-
lási feltételek, amelyek között a rostot használják,
málisan elkészített képek száma 500 kép volt
drámai módon változhatnak két egymást követő
másodpercenként. Az optikai felbontás 7,63
[µm/pixel]. Képelemzés alapján egy-egy rost
A rostrugalmasság/merevség meghatározá-
képe maximum ötször vehető fel a nagy nyíró-
sának általunk követett koncepciója a rost és
erejű zónában.
egy ideálisan rugalmas partner összehasonlítá-
Az egyedi rostnak a hidrodinamikus terhe-
sán alapszik. Az egyedi rost áramlási mezőben
lésre mutatott reakciója lesz az adott rost rugal-
való reprezentálása alapján kiszámítjuk ennek a
massága meghatározásának az alapja.
rostnak a helyzetét és megjelenését a következő
Az áramlási cellát az Áramlástani és Hőát-
képen, feltéve, hogy a rostok középvonalában
adási Intézettel együttműködésben fejlesztet-
lévő minden egyes pont ideális módon követi az
ték ki a Grazi Műszaki Egyetemen.
áramlási mezőt. Ennek az ideálisan rugalmas
Az eredmény egy olyan cella, amelyben
rostnak a referenciarosttal összehasonlított vál-
azonos áramlási sebességgel rendelkező két
tozását értékeljük az alak összehasonlításával.
áramot egymással szemben vezetnek. Ezál-
Az alak hasonlóságát a rost alakját leíró, több
tal elegendő nyíróerő keletkezik ahhoz, hogy
paramétert tartalmazó vektorok közti euklideszi
látható rostdeformáció keletkezzen lamináris
távolság alkalmazásával számítjuk ki.
áramlási rendszer feltételei mellett.
A valós rost deformációját hasonló módon
A pulzálás elkerülése érdekében (a pul-
értékeltük (a referenciarostot hasonlítottuk
zálások befolyásolnák vagy akár rombolnák
valódi reprezentációjához a következő képen).
is a lamináris áramlási mezőt) a szuszpenziót
A valós rost deformációja és az ideálisan rugal-
sűrített levegő alkalmazásával a transzparens
mas rost deformációja közti arányt alkalmaztuk
cellán keresztül átszivattyúzzák.
WORKING GROUP 1.
A Newly Developed Method for Single Fibre
R. Eckhart1 – M. Donoser2 – W. Bauer1
1Institute for Paper, Pulp and Fiber Technology – IPZ Graz University of Technology
Kopernikusgasse 24/II A-8010 Graz Austria
2 Institute for Computer Graphics and Vision – ICG
Graz University of Technology
the fibre to fibre contact in a sheet [2]. Still, neither
of these methods can be applied on line.
A new method for single fibre flexibility meas-
Today pulp morphology parameters like for
urement in suspension was developed at the Insti-
example fibre length, width, curl or kink [3] are to an
tute for Pulp, Paper and Fibre Technology at Graz
increasing extent determined using commercially
University of Technology.
available flow cells with high on line applicability.
A flow cell with suitable channel geometry is
Highly diluted fiber suspension is pumped through
used to induce a flow field with high shear forces
a transparent cell and photographs of individual
in flowing suspension. These shear forces are
fibers are taken by means of transmitted light micro-
strong enough to deform pulp fibres under laminar
scopy. Automated image analysis is used to detect
flow conditions. A high speed image acquisition
and evaluate the fibres in these images.
system is used to acquire several images of a fibre
Two fibre flexibility measurement methods
while passing the transparent flow cell. Thereby
show at least theoretical on-line applicability in
the deformation of the fibre due to the shear forces
such a flow cell. Kuhn et.al. [4] described a meth-
od where fibres are photographed while exiting
To gain access to the defined flow conditions
a capillary tube into a main channel. The fibres
at any point in the sheared region the flow field
are deformed due to the load of the fluid flow of
was simulated in FLUENT.
the main channel. The deformation of the fibres
The fluid flow is then linked with the fibres
exiting the tube is compared to that of fibres of
reactions. Thereby a flexibility parameter for every
defined flexibility, simulated under the same flow
evaluated fibre is determined.
conditions. This method was never implemented in a commercially available device.
Another method was patented by STFI in 1992
[5]. The fiber curl of a large number of fibers is
registered at two different flow velocities. As the
Fibre flexibility/conformability is an important
shear rate in the flow cell is higher at increased
pulp parameter during stock preparation, sheet
fluid velocity the fibers are straightened in the
forming, in fiber to fiber bonding and thus for the
second run. Fibre flexibility is not determined for
resulting paper properties.
every single fibre but defined as the relationship
Several fibre flexibility measurement methods
between the average fibre curl values of the two
are mentioned in the literature. Some are based on
measurements. The method is implemented in the
single fibre manipulation and apply bending beam
commercial fiber analyzer FibreMaster.
theory to determine a modulus of elasticity. These
The goal was to develop a flow cell based meth-
methods are rather tedious and or can not treat all
od that delivers flexibility values for every evaluated
fibres in a given pulp sample but are restricted to
fibre. That way not only average flexibility values but
rather long and undamaged fibres [1]. Others are
distributions of fibre flexibility should be accessible.
based on the fibres ability to conform to a wire/
Such distributions of fibre flexibility might deliver
glass fibre/another pulp fibre after settling on to a
beneficial information concerning for example the
glass slide. These methods determine a "conforma-
earlywood-latewood ratio or the number of fibres
bility" that is closer to the fibre property relevant for
reached during a refining process.
WORKING GROUP 1.
that the fibres tend to move in the centre plane of the flow channel. Furthermore the z-direction of the
The idea is to use an appropriate flow cell
channel is not accessible in the images. Therefore
geometry to generate shear forces strong enough
only the centre plane of the channel was simulated.
to provoke fibre deformation under the boundary
The velocity components in x- and y-direction as well
condition of a laminar flow regime. A high speed
as their gradients are known with a spatial resolution
image acquisition system is used to record the
of 30 μm. As an example Fig. 1b shows a contour plot
movement of single fibers in the sheared region.
representing the velocity magnitude in the flow cell.
Based on the fibres deformation due to the fluid
Based on this simulation, the hydrodynamic
forces a flexibility parameter is determinable for
conditions in the flow field are accessible and can
every evaluated fibre.
be linked to the fibres reactions.
Images are acquired using a Basler A504k high
speed camera. It allows a frame rate of 500 images
The Flow Cell
per second. Thereby each fibre passing the cell is acquired 2 to 3 times in the region of highest shear
The flow cell was developed in cooperation with
forces. The optical resolution is 7.63 [µm/Pixel]. Illu-
the Institute of Fluid Mechanics and Heat Transfer of
mination is done using one red high power LED.
Graz University of Technology (Fig. 1.) .
Automated image analysis is used to evaluate
Several channel geometries were tested but only
the acquired images. Two main tasks have to be
the one described in the following induced shear forc-
accomplished by the image analytical algorithms:
es strong enough to provoke visible fibre deforma-
fibre segmentation and fibre tracking through the
tion under the boundary condition of a laminar flow
consecutive images, where fibre tracking means
regime. Two fluid streams of identical flow rate and
relocating a specific fibre in the consecutive image.
velocity are headed against each other in a crossing.
The segmentation process starts with a back-
The average flow velocity in the ingoing channels is
ground correction to delete impurities in the optical
1,4 [m/s]. No turbulence or mixing of the fluid streams
path and eventual uneven illumination. In the next
headed against each other occurs. Fig. 1a shows
step binary images of the fibres are calculated.
schematically the transparent flow cell made of Plexi
Based on these binary images the corners of the
Glass. To avoid pulsations (pulsations would affect
fibre are detected and the fibre is reduced to its
or destroy the laminar flow field) in the fluid flow,
centreline. Fibre length as well as the centre of
suspension transport is done using a pressure resist-
gravity is calculated.
ant glass bottle equipped with a stand pipe and a
Tracking of the fibres through the consecutive
compressed air connection. Thereby the suspension
images is done using the flow field data and the
is pumped through the flow cell by air pressure.
fibres length. The region where the centre of gravity
The flow conditions in the flow field were simu-
of a detected fibre should most likely emerge in the
lated by the Institute of Fluid Mechanics and Heat
following image can be calculated. If a fibre within
Transfer using FLUENT. Experiments have shown
a certain distance to this calculated region shows
Fig. 1: The flow cell made of Plexi glass with the two streams meeting in a crossing and the profile of the velocity field in the
region of high shear forces (one of the symmetric quarters)
WORKING GROUP 1.
an adequate fibre length it is selected as a second
undergoes compared to the reference fibre in the
representation of the specific fibre. That way up to
first image is evaluated using a comparison of
five representations of a fibre can be captured for
shape. The Euclidian distance between vectors
flexibility determination.
containing several shape parameters and thereby describing the shape of the reference fibre and of the calculated ideally elastic one represents the
Determination of Fiber Flexibility
deformation of the ideally elastic fibre and thereby determines the "load" acting on the fibre.
For a calculation of fibre flexibility in terms of an
The deformation of the real fiber in the high shear
elasticity modulus the real forces acting on the fibre
zone is calculated likewise based on the reference
due to the fluid load would be necessary. These
fibre (the one that was used to calculate the ideally
forces are determined by the speed difference
elastic one) and the same fibre in the consecutive
between fibre and fluid. In our concept this speed
image. The deformation of the real fibre due to the
difference is not determinable as the fluid flow con-
fluid forces determines the "reaction" of the fibre.
ditions a fibre is exerted to can change dramatically
The ratio between the deformation of the real
between two consecutive images. Even an estima-
fiber and the ideal one, the ratio between "reac-
tion of the translational and the rotational part of
tion" and "load" is used as a parameter for the
fiber movement would demand a higher framerate.
Therefore an approach using bending beam theory
The method delivers promising results e.g. for
and the forces acting on the fibre to determine the
softwood fibres with different drying history or for
modulus of elasticity seemed inappropriate.
fibres treated in a laboratory refiner to increase
The concept for the determination of the fibres
fibre flexibility step by step.
flexibility/rigidity is based on a comparison of the fibres behaviour with that of a calculated ideally elastic counterpart.
Two consecutive images of the same fibre
are taken into account for the determination of its
The authors gratefully acknowledge financial
flexibility. The first image of the specific fibre in the
support of the Austrian Research Promotion Agen-
region of high shear forces is used to calculate
cy Ltd. (FFG) and of Andritz AG, Pöls AG, Sappi
position and appearance of the fibre in the follow-
Gratkorn, SCA Graphic Laakirchen, Smurfit Net-
ing frame, provided that every single point along
tingsdorfer Papierfabrik and the Delfort Group.
the fibres centreline follows the flow field ideally. The result is an ideally elastic fibre following the fluid flow without any restrictions (bright gray in
Fig. 2). The deformation this ideally elastic fibre
[1] Tam Doo P.A.; Kerekes R.J.; A Method to
Measure Wet Fiber Flexibility. Tappi Jour-nal, 64 (3) 513 (1981)
[2] Mohlin U.B.; Cellulose fibre bonding; Part
5. Conformability of pulp fibres. Svensk Paperstidning, 78 (11) 412 (1975)
[3] Jordan B. G.; Nguyen N. G. Curvature,
Kink and Curl. Paperii ja Pu, 4 313 (1986)
[4] Kuhn D.C.S.; Huang Z.; Trepanier R.J.;
Patchka H.; Dynamic Wet Fiber Flexibil-ity Analyzer. TAPPI Procedings / Process and Product Quality Conference and Trade Fair, page 67 1997.
[5] STFI; Method and Apparatus for Measur-
ing Fibre Flexibility. International Patent
Fig. 2: Two schematic representations of a fiber as it is
Classification: G01N 15/02, International
photographed in the high shear zone and the calculated,
ideally elastic counterpart (bright grey); scaling in pixels
Publication Date: 02. April 1992, Interna-
(7,36 µm/pixel)
tional Publication Number: WO 92/05423.
Cellulóz szupramolekuláris szerkezetének szilárd
fázisú NMR és Röntgen-diffrakciós összehasonlító
vizsgálata fenyő kraftcellulóz roston
Per Tomas Larsson*, Mihaela Cristina Popescu** és Cornelia Vasile***STFI-Packforsk AB, Box 5604, SE-114 86 Stockholm, Svédország, tomas.larsson@stfi.se
** P.Poni Institute of Macromolecular Chemistry Department of Physical
Chemistry of Polymers 41A Grigore Ghica Voda Alley, R0 700487 IASI
A COST E54 akció
néhány a meglévő modellek keretén belül ösz-
keretén belül közös rost-
szehasonlítható. A Röntgen-diffrakció és az
mintákat használtak. NMR különböző természete miatt különböző Egy fehérítetlen fenyő
modelleket alkalmaztak az adatok értelmezé-
kraftcellulózt és egy fehé-
sére, ami bizonyos mértékig megnehezítette az
rített fenyő kaftcellulózt
összehasonlítást. Az cellulóz I, lévén félkristá-
bocsátottak az összes
lyos anyag, amely a rostfal komplex morfológiá-
akcióban résztvevő ren-
jába rendezett biopolimerekből áll, nem igazán
delkezésére. A COST
optimális anyag az NMR vagy Röntgen-diffrak-
E54 akció keretén belül
ciós mérésekhez.
szilárdfázisú NMR (CP/
Az összehasonlítás az eredmények három
MAS 13C-NMR) és Rönt-
kategóriájára történt: cellulóz I látszólagos
Tomas Larsson
gen diffrakciós adatok
krisztallitmérete, a kristályosság foka és a rost-
(XRD) eredményeit rögzítették.
falban lévő cellulóz cellulóztartalma. Ez a három
Az azonos anyagokkal végzett vizsgálatok
tulajdonság, közvetve vagy közvetlenül, rendel-
a műszeres mérések széles körének alkalma-
kezésre áll mind a Röntgen-diffrakcióból mind
zásával ritka alkalmat teremtenek a módszerek
az NMR mérésekből.
interkalibrálásához és az adatok értelmezésé-
A Röntgen-diffrakció és NMR működési
hez használt modellek érvényességének vizs-
elveinek különbözősége miatt az 1. táblázat-
gálatához. Ebből a célból a Röntgen-diffrakció
ban bemutatott eredmények közti egyezőség a
és NMR mérések eredményeinek összehason-
kiválótól a jóig értékelhető. A cellulóztartalom
becslésében megállapított különbség várható
Az összehasonlítás fő célja a cellulóz I
volt, mivel tudott, hogy az NMR módszer nem
szupramolekuláris szerkezete, azaz a cellulóz
veszi figyelembe a hemicellulóz jel intenzitá-
nativ formája volt. Az NMR és Röntgen-diff-
sát. Mindkét módszer enyhe növekedést mutat
rakció alapvetően különböző mérési techni-
fehérítés után a látszólagos krisztallitméretben,
kák, melyek adatokat hoznak létre; ezek közül
míg a kristályosság foka változatlan marad.
Látszólagos krisztallitméret (nm)
Kristályosság foka (%)
Cellulóztartalom (%)
1. táblázat: A cellulózmintákon rögzített Röntgen-diffrakció és NMR eredmények Az NMR esetében a látszólagos krisztallit-
méreteket a mért átlagos laterális fibrilla-méretből becsültük, figyelmen kívül hagyva a fibrilla-felületi polimereit. A glükánlánc
átlagos laterális mérete 0,57 nm volt. A kristályosodás fokának NMR becslése tartalmazza a parakristályos formákat is.
WORKING GROUP 1.
A comparative CP/MAS 13C-NMR and XRD study of
the cellulose supra-molecular structure in softwood
kraft pulp fibers
Per Tomas Larsson*, Carmen Mihaela Popescu** and Cornelia Vasile**
*STFI-Packforsk AB, Box 5604, SE-114 86 Stockholm, Sweden, tomas.larsson@stfi.se
** P.Poni Institute of Macromolecular Chemistry Department of Physical,
Chemistry of Polymers, 41A Grigore Ghica Voda Alley, R0 700487 IASI
Key words:
estimates of cellulose allomorph composition,
Softwood kraft pulp, spruce, pine, Nuclear
degree of crystallinity, lateral dimensions for both
Magnetic Resonance, CP/MAS 13C-NMR, XRD,
cellulose fibrils and for cellulose fibril aggregates.
X-ray diffraction, cellulose supra-molecular struc-
In cellulose I isolated from softwoods cellulose I
ture, Cellulose fibril, Cellulose fibril aggregate,
fibrils are typically 4 to 5 nm thick and cellulose
Kraft cooking, Bleaching
fibril aggregates thicknesses range from 15 to 30 nm depending on isolation procedure.
The most known method of determining the
structure characteristics of cellulose substrates is the study of their X-ray diffraction, in the small
Cross Polarization Magic Angle Spinning (CP/
as well as wide angle region. The X-ray diffrac-
MAS) Carbon-13 Nuclear Magnetic Resonance
tion in the wide angle region (beyond 2θ = 6
(13C-NMR) spectroscopy and X-Ray Diffraction
degrees) allows the determination of the degree
(XRD) has been used to study cellulose I structural
of crystallinity, the degree of orientation and from
characteristics. Both methods were applied to the
the width at the half maximum intensity of the
same set of samples, unbleached and bleached
meridional and equatorial reflections, the crys-
softwood kraft pulps. Despite the differences in
tallite length and width dimensions, respectively
principles of operation the two measuring tech-
(Krässig 1993 [4],Teeaar 1987 [7]).
niques give some estimates of material properties
The average size of the crystallites can be
that can be compared. In this study the focus was
evaluated using the well-known Scherrer equation
on the cellulose I fibril dimensions, degree of crys-
while the degree of orientation can be obtained
tallinity and the cellulose content of the materials.
through calculation of the Hermans orientation
Within the models used for interpreting the meas-
function (Cullity, Stock 2001 [2]). Other charac-
ured data good agreement between the two meth-
teristics related to the material crystallinity can be
ods were found for fibril dimensions and degree of
also obtained (Anderson 2003 [1], Popescu 2007
crystallinity. Estimates of cellulose content were in
[6]). Unfortunately this method can not reflect the
qualitative agreement, which was expected since
hydrogen bonding patterns, allomorph composi-
the NMR method tends to over estimate the cellu-
tion in cellulose crystallites and the integrity of the
lose content in the presence of hemicellulose.
crystallite (J. Xe 2007).
Both NMR and XRD methods are depen-
dent on models for the interpretation of recorded
data. Due to the fundamental differences relat-ing to how data is acquired, different conceptual
CP/MAS 13C-NMR spectroscopy has been
models are used for interpretations. In the case
shown to be a versatile tool for the study of cellu-
of estimates of lateral dimensions as obtained
lose supra-molecular structure (VanderHart 1984
from the two methods it is necessary to impose
[8], Larsson 1997 [5], Wickholm 1998 [9], Hult
some assumptions in order to obtain compa-
2001 [3]). Measured spectra can be used to obtain
rable results. Further, the interpretation of NMR
WORKING GROUP 1.
spectra includes separate signal intensity from
using a 4.3 μs proton 90o pulse, 800 μs ramped
so-called para-crystalline cellulose, domains of
(100 – 50%) contact pulse and a 2.5s delay
highly ordered glucan polymers interior in the
between repetitions. A TPPM15 pulse sequence
fibril (Larsson 1997 [5], Wickholm 1998 [9]).
was used for 1H decoupling. Glycine was used
Currently it is not clear whether or not the para-
for Hartman-Hahn matching procedure and
crystalline form contribute to the degree of crys-
as external standard for the calibration of the
tallinity as observed by XRD.
chemical shift scale relative to tetramethylsilane ((CH ) Si). The data point of maximum intensity
in glycine carbonyl line was assigned a chemical
shift of 176.03 ppm. The software used for spec-tral fitting was implemented at STFI-Packforsk
Materials: The unbleached and the bleached
AB and is based on a Levenberg-Marquardt
pulps were commercial pulps supplied by Södra
algorithm (Larsson 1997) [5].
Cell Värö, Sweden. The spruce (P. abies) to pine (P. sylvestris) ratio was 79:21. The pulp was batch cooked and TCF-bleached. The bleaching
Results and discussion
sequence was Q OP Q+Paa PO where Q repre-sents a chelator and Paa is per-acetic acid. The
The main target for the comparison was
kappa-numbers were 26.8 and 3.2 respectively
the supra-molecular structure of cellulose I, the
for the unbleached and the bleached pulps.
native form of cellulose. NMR and XRD are fun-
X-ray diffraction (XRD): The analysis was
damentally different measuring techniques that
done using a Bruker diffractometer equipped
generate data, some of which are directly com-
with a Kristalloflex 760 sealed-tube copper
parable within the limits of existing models. Due
anode generator, operated at 40 kV and 40
to the different nature of XRD and NMR different
mA, and a two-dimensional position-sensitive
models are used for interpreting data, which to
wire-grid detector (Bruker AXS) pressured with
some extent complicates the comparison. Cel-
xenon gas. Collimation was effected by a graph-
lulose I being a semi-crystalline material made
ite monochromator with a 0.8-mm pinhole, the
up from bio-polymers arranged into a complex
sample-to-detector distance was 9 cm. Samples
morphology of a fibre wall is not the optimal mate-
were placed in sealed Mark-Röhrchen glass
rial for NMR or XRD measurements.
capillaries (Charles Supper) of 1.0 mm inner
The comparison was made for three catego-
diameter (1200 scans).
ries of results: cellulose I fibril lateral dimensions,
NMR spectroscopy. All samples were wetted
the degree of crystallinity and the cellulose con-
with deionised water (40 to 60% water content)
tent of the fibre sample. These three properties
and packed uniformly in a zirconium oxide rotor.
are directly or indirectly available from both XRD
The CP/MAS 13C-NMR spectra were recorded
and NMR measurements.
using a Bruker Avance AQS 300 WB instrument
Table 1 shows the results of the compari-
operating at 7.04 T. All measurements were per-
son of estimates from NMR and XRD. A slight
formed at 290 (+/- 1) K. The MAS rate was 5 kHz.
increase in apparent crystallite size due to the
A double air-bearing probe was used. Acquisi-
bleaching is observed using both NMR and
tion was performed with a CP pulse sequence,
XRD. Further the agreement in lateral dimension
Apparent crystallite size (nm)
Degree of crystallinity (%)
Cellulose content (%)
Table 1. XRD and NMR results recorded on the pulp samples. In the NMR case the apparent crystallite sizes was estimated from
the measured average lateral fibril dimension by neglecting fibril surface polymers. The average lateral dimension of a glucan chain
was set to 0.57 nm. The NMR estimates of the degree of crystallinity include contributions from para-crystalline cellulose forms.
WORKING GROUP 1.
estimates between NMR and XRD is excellent.
for financial support. Karin Sjöström, Södra Cell
Results obtained from NMR spectral fitting give
Värö, Sweden is acknowledged for supplying the
estimates for the lateral fibril dimension (LFD)
pulp sample materials and pulp specifications.
which includes the fibril surface glucan chains.
The authors are grateful to Dr. Paul Ander for the
The procedure used to translate LFD measures
distribution of the sample material to the partici-
to apparent crystallite size (the lateral dimension
pants within the COST E54 action.
of the highly ordered fibril interior) was to remove the contribution of surface glucan from the LFD. This gives a reduction in LFD measures with 1.14
References
nm. These are the NMR values quoted for appar-ent crystallite size in Table 1.
[1] Andersson S. Serimaa R. Paakkari T,
Due to the occurrence of para-crystalline
Saranpaa P., Pesonen E. Crystallinity of
(PC) signal intensity in NMR spectra recorded
wood and the size of cellulose crystallites
on cellulose I (Larsson 1997 [5], Wickholm 1998
in Norway spruce (Picea abies) J. Wood
[9]), a question arises whether or not this form of
Sci., 49 531-537 (2003)
cellulose I will be detected as crystalline cellulose
[2] Cullity B.D. and Stock S.R. Elements of X-
I during XRD measurements. In the studied sam-
Ray Diffraction (3rd Edition), 2001. Addi-
ples the cellulose I forms classified as crystalline
son-Wesley Publishing Company Inc,
and para-crystalline were about 20% and 35%
Reading, UK.
respectively according to NMR, typical for cel-
[3] Hult E.-L, Larsson P.T. and Iversen T.
lulose I isolated from softwood. It is obvious from
Cellulose fibril aggregation – An inherent
the comparison with XRD data that the relevant
property of kraft pulps. Polymer 42 3309-
basis for comparison consists of the sum of crys-
talline and para-crystalline NMR signal intensity
[4] Krässig H. A., Cellulose. Structure, Acces-
adding up to some 55%.
sibility and Reactivity, Chap. 3. Methods of Fiber Structure Characterization. Polymer Monographs, Vol 11, Gordon and Breach
Science Publishers: 43-147 (1993)
[5] Larsson P.T., Wickholm K. and Iversen
Given the differences in principle of operation
T. A CP/MAS 13C-NMR investigation of
between XRD and NMR the agreement between
molecular ordering in celluloses. Carbo-
similar results is judged as excellent to good. The
hydr. Res. 302 19-25 (1997)
difference found in the estimates of cellulose
[6] Popescu C-M., Popescu M-C., Singurel
content is expected since the NMR method is
G., Vasile C., Argyropolulos D.S. and Wil-
known to discriminate hemicellulose signal inten-
for S., Spectral characterization of Euca-
sity. Both methods indicate a slight increase in
lyptus Wood, Appl. Spectr. 61 (11) 1168-
the apparent crystallite size after bleaching while
the degree of crystallinity remains unchanged.
[7] Teeaar R., Serlmaa R., and Paakkari T.
Further, the comparison of the degrees crystal-
Crystallinity of cellulose, as determined
linity determined by NMR and XRD indicate that
by CP/MAS NMR and XRD methods,
the NMR signal intensity interpreted as para-
Polymer Bulletin 17 231-237 (1987)
crystalline cellulose is detected as a crystalline
[8] VanderHart D.L. and Atalla R.H. Stud-
form during XRD measurements.
ies of Microstructure in Native Celluloses Using Solid-state 13C NMR. Macromol-ecules 17 1465-1472 (1984)
[9] Wickholm K., Larsson P.T. and Iversen
T. Assignment of non-crystalline forms
The EU COST action E54 "Characterisation of
in cellulose I by CP/MAS 13C NMR spec-
the fine structure and properties of papermaking
troscopy. Carbohydr. Res. 312 123-129
fibres using new technologies" is acknowledged
2. MUNKACSOPORT – Egyedi rostok kezelése és jellemzésük mikrotechnológiákkal
sósavval, foszforsavval és cellulázzal
Paul Ander és Geoffrey Daniel
CRUW, Erdei Termékek Főosztálya/Faipari tudományok
SLU, PO Box 7008, SE-75007 Uppsala, Sweden
Az új sósavas mód-
rostanyagok közötti különbségekben. A – főként a
szert haszáltuk különböző
rost felületén aktív – nagy cellulázmolekulák eseté-
lucfenyő, erdeifenyő, nyír-
ben a glükóz volt a kibocsátott legnagyobb mennyi-
fa, eukaliptusz és TMP-
ségű cukor, ami nagy EG + CBH katalitikus tevékeny-
rostok összehasonlítására.
séget tükröz 0.8 g/l glükóz adagolása mellett.
Néhány eredményt az 1.
Az 1. ábra lucfenyő teljes hasadását mutatja
táblázatban mutatunk
1N HCl jelenlétében. A 2. ábrán 79%-os foszforsav
be: a gyári rostok savra
hatására bekövetkező gömbduzzadás és felcsava-
sokkal érzékenyebbek rodottvoltak, mint a laboratóri-
S1 „gyöngysor" láthatók. A gömbduzzadás a
umi rostok, és a nagyobb
rostok tulajdonságaitól függ.
Paul Ander
Vizsgáltuk a HCl hatását eukaliptuszra és
nyú rostanyagok is sokkal
nyírcellulóz rostokra. Ezek az eredmények azt
érzékenyebben reagáltak a savra. A szinergetikai
mutatják, hogy a nyír kraftcellulóz rostjai sokkal
hatás miatt az N342 és a Celluclast az összes rost
inkább ellenállnak a savnak, mint az eukaliptusz-
nagyon erős hasadását eredményezte. A cellulázok
rostok. A hosszabb nyírrostok (cca 1 mm) ellené-
azonban nem mutattak különbséget a gyári és labo-
re, ezek a rostok kevésbé hasadtak, mint a 0.65
ratóriumi rostanyagok között. A HCl a fenti rostokat
mm hosszú eukaliptuszrostok. (hasadás 0.22-0.35
0.7-1.7 µm között duzzasztotta, míg az N342 és a
vs 0.835-1.40). Ebben az eltérésben az edények és
Celluclast a rostszélességet 1–3 µm-rel csökkentet-
a parenchimaszövet is szerepet játszanak.
te. A HCl bocsátotta ki a legtöbb xylózt (0.1 g/l) és nagyon kevés glükózt (0.015 g/l). Ez arra utal, hogy a HCl 80–82°C-nál az összes sejtfalrétegen áthatol, ezzel
degradálva főként a hemicellulózokat. Így a xilán és a glükomannán sav hatására történő degradációjának
A sósavas kezelés, a rosthosszúság megha-
van bizonyos jelentősége a gyári és laboratóriumi
tározása és a rostonkénti hasadás (viszonyítva a
Gyári II
1. Táblázat. Gyári és laboratóriumi kraftrostok hasadása HCl (81°C, pH 0) és különböző celluláz keverékek hatására 50°C-nál. A celluláz N476-
nál pH értéke 7 volt, és a többinél pedig 5. *0.3 ml; **0.6 ml enzim.
Folyt. 240. oldalon
WORKING GROUP 2. – Treatment and characterisation of individual fibres by microsys-
Testing of pulp fibres with HCL, phosphoric acid and
Paul Ander and Geoffrey Daniel
CRUW, Dept. of Forest Products/Wood Science, SLU,
PO Box 7008, SE-75007 Uppsala, Sweden
fibre line were: I. After cook; II. After Wash press; III. After O2; IV. After EOP; V. After D2. L -values are from
HCl treatment, determination of fibre length and
each sampling point before HCl-treatment [2].
cleavage per fibre was found to differentiate between pulps made in the laboratory and mill even though
HCl-treatment and calculation
the same batch of spruce wood fibres was used. This
Final version of the HCl-method is given in [2,4]. In
was not the case for cellulase fibre cleavage. The
short, never-dried fibres are swelled in 20 ml water and
reason is due to better penetration of fibre walls by
20 ml 2N HCl added to give pH 0. Incubation is then
the acid at a higher temperature with release of hemi-
carried out for 4h at 80-82°C with cleavage completed
cellulose sugars, while cellulase activity is mainly
during cooling using a stirring bar for 30 min. Finally
restricted to the fibre surfaces, except in dislocations,
the fibres are washed with phosphate buffer at pH 7 to
with release of glucose as the main sugar. Phosphoric
remove the acid. Fibre length determination was done
acid probably penetrates through cracks and disloca-
using a FibreMaster or a Kajaani instrument. Calcula-
tions of the S1 wall and swells the S2 fibre cell wall cre-
tion: Cleavage per fibre = (L / L) – 1 were L is length
ating balloons. The number of balloons and degree of
weighted fibre length distribution in mm for control in
swelling reflects the history of the pulp fibre such as
water (or for untreated fibres), and L is length weighted
bleaching and mechanical treatment.
fibre length distribution in mm for HCl-treated fibres.
HCl and Cellulase treatment
The four kraft pulps Mill I & Lab I and Mill II & Lab II
were tested with HCl as above and with Novozym 476
The new pulp fibre testing method called the
(monocomponent endoglucanase EG), Novozym 342
HCl-method can be used to compare different spruce,
(multicomponent endoglucanase + cellobiohydro-
pine, birch, Eucalyptus and TMP pulp fibres by allow-
lase CBH) and Celluclast 1.5L (EG + CBH from Trichode-
ing calculation of the number of fibre cleavages in
rma reesei) at 50°C [4].
dislocations and other weak points [1,2]. Here fibre
cleavage using HCl and cellulase treatments are fur-
ther evaluated regarding differences in cleavage pat-
Arabinose, galactose, glucose, mannose and
tern, in degradation of the different fibre cell walls
xylose in fibre filtrates were determined at M-real/
and in sugar release [3]. For more background see [4].
MoRe Research, Örnsköldsvik using ion chromatog-
The use of phosphoric acid and fibre balloon swelling
raphy and pulsed amperometric detection [4].
as a test of fibre quality is also shortly described.
Phosphoric acid swelling
Balloon swelling of fibres was performed using
79% ortho-phosphoric acid as described earlier
[5-7]. Some balloon swelling tests were also done
with 8% LiCl in DMAC, copperethylenediamine
Source and properties of kraft and TMP pulp fibres
and Fe(III)-tartrate [7].
are given in [1,2]. Four kraft pulps were from two
Light microscopy. For polarized light microscopy,
Scandinavian mills and called Mill I & Lab I (spruce:pine
a Leica DMLB or DMLS coupled to an Image-Pro Plus
relation 33:67) and Mill II & Lab II) (spruce:pine relation
84:16) [3]. Spruce kraft pulp samples along a kraft pulp
Cont. p 241
1.ábra. Lucfenyőrost HCl hatására bekövetkező teljes hasadása,
2.ábra. Lucfenyőrost gömbduzzadása
feltárva a sejt belsejét
diszlokációk számához) különbséget tesznek a
szemben. A foszforsav valószínűleg behatol a S1
laboratóriumban vagy gyárban előállított rost-
fal repedéseibe és az elmozdulások közé, és meg-
anyagok között, még akkor is, hogyha ugyanazt
duzzasztja az S2 rostsejtfalat, ezáltal gömböket
a lucfenyőrostot alkalmaztuk. Ugyanakkor ezt
hoz létre. A gömbök száma és a duzzadás foka
nem tapasztaltuk cellulázos rosthasításban. A
tükrözi a cellulózrost múltját, mint például fehérí-
nyírfarostok nagy ellenállást mutatnak a sósavval
tés és mechanikai kezelés.
WORKING GROUP 2.
image analysis program was used. Dislocations are most easily seen in latewood fibres.
Scanning electron microscopy
Pulp fibres and fragments (free of buffer) follow-
ing HCl or cellulase treatments were prepared and
gold sputtered as described [4,7]. Electron micro-
scopy instruments used were Philips ESEM XL 30 or
Hitachi 4500 FE-SEM.
Results and discussion
Dislocations as light bands are most easily seen in
latewood fibres in polarised light and one example is
shown in Fig. 1. It was reported in Riga 2004 [8] and
in [1] that industrial (Mill) pulps, both from early thin-
Fig. 1. Spruce latewood fibre showing dislocations in pol. light
nings and final cutting, were significantly more sensi-
tive to HCl cleavage indicating more dislocations than
in laboratory (Lab) produced kraft pulps from the
same spruce wood batch. Thus the HCl-method is a
valuable tool in Strength Delivery studies [1,2]. These
results have been confirmed for many kraft pulps
and one example is given in Fig. 2. In a comparison
between bleached pine and spruce kraft pulps, it was
shown that pine pulp fibres were less sensitive to HCl
cleavage than spruce kraft pulps (Fig. 3). A similar
result was obtained for pine and spruce TMP pulps.
Influence of hemicellulose
Bleached spruce pulp fibres (PH, RDH, ITC, PS)
containing 8.1, 15.9, 17.0, and 20.8 % hemicellulose,
respectively were tested with the HCl-method [2].
The corresponding cleavage per fibre were: 4.90,
3.42, 3.10, 2.43 (R2 = 0.965). Thus hemicelluloses,
Fig. 2. Cleavage of Lab and Mill spruce fibres by HCl.
mainly glucomannan, may protect the cellulose from acid cleavage.
Fibres from a kraft pulp fibre line
Pulp fibre samples were taken along a pulp fibre
line. Strong cleavage was obtained after the wash
press in point 2 indicating fibre compression and
mechanical effects in the wash press [2]. In samples
3-5, the cleavage numbers gradually decreased prob-
ably due to removal of HCl-vulnerable structures
already in the bleaching process. Thus the HCl-meth-
od can be used to study all kinds of pulps and to
evaluate pulping processes (Fig. 4).
Comparison of fibre cleavage by HCl and Cel-
Four pulps (see Table 1) were tested with HCl and
the cellulases N476 (EG), N 342 and Celluclast 1.5L
Fig. 3. Cleavage of bleached pine and spruce fibres by HCl
WORKING GROUP 2.
(both with EG + CBH). The last two cellulase mixtures
decreased fibre width, with glucose beeing the major
gave good fibre cleavage in dislocations but only HCl
sugar released reflecting the catalytic activity of EG +
could differentiate between Mill and Lab pulp fibres
CBH giving up to 0.8 g/l of glucose.
(Table 1). N476 containing only endoglucanase had little cleavage activity.
Balloon swelling of pulp fibres
Some interesting points from Table 1: Mill fibres
The morphology of balloons produced by 79%
were more sensitive to acid than Lab fibres, and pulps
phosphoric acid swelling [5] was studied in light- and
with a larger spruce to pine relationship were also more
electron microscopy (SEM and TEM). The goal was
acid sensitive. Due to the synergistic effect, N342 and
to evaluate balloon swelling as a method for char-
Celluclast gave very strong cleavage of all pulp fibres.
acterization of spruce kraft pulp fibres [5,7,9]. The
The cellulases, however did not distinguish between Mill
studies showed that phosphoric acid was the best
and Lab pulps. HCl swelled the above fibres between
swelling agent as compared with LiCl/DMAc giving a
0.7-1.7 µm, while N342 and Celluclast decreased fibre
slimy substance on the fibre, which hindered electron
width by 1-3 µm (not shown) indicating removal of S1
microscopy studies. Very stable balloons, possible to
and the outer part of S2 fibre cell walls by cellulase [4].
study in EM, were obtained in fibres with 3-4% lignin.
Furthermore, HCl released most xylose (0.1 g/l) and very
Cellulase-treated, bleached or mechanically affected
little glucose (0.015 g/l). This indicates that HCl at 80-
fibres gave rapid ballooning and further dissolution
82°C is penetrating all cell wall layers mainly degrading
of the fibre. The reason for the remarkable regularity
hemicelluloses. Thus degradation of xylan and gluco-
of swelling in the form of "string of pearls" or if dislo-
mannan by the acid seems to be of some importance
cations are involved is not known with certainty. Eck-
for the differences obtained between Mill and Lab pulp
hart et al. [9] developed an image analysis method to
fibres. For the large cellulase molecules acting mostly
study fibre swelling in copperethylenediamine and
on the fibre surface; a supposition supported by the
calculated degree of swelling in percent of the total fibre length. In this way an indication of outer fibre wall damage for pulps of similar type was obtained. Dislocations may be involved in this fibre swelling.
Le Moigne et al. [10] recently investigated swell-
ing of bleached cotton fibres, Na-sulfite pine pulps
and Ca-bisulfite spruce pulps in N-methylmorpho-
line-N-oxide – water mixtures and in NaOH-water.
It was suggested that both the primary wall and
the outer part of the S1 wall are important in bal-
loon swelling and formation of "unswollen sections"
between the balloons (similar as in Fig. 7). This is
partly in contrast to our opinion [6,7] after using
spruce kraft pulp without primary wall, which if
present, is only 0.1-0.2 µm thin. We suggested that it
is mainly the S1 wall, which is rolled off the balloons
creating the "collars" shown in Fig. 7. In COST Action
E54 we want to continue cooperation to clarify fur-
Fig. 4. HCl cleavage of fibres from a pulp fibre line.
ther the mechanisms of balloon swelling of different
Pulp type
Table 1. Cleavage of Mill and Lab kraft pulp fibres by HCl (81°C, pH 0) and by different cellulase mixtures at 50°C.
Cellulase N476 was run at pH 7, and the others at pH 5. *0.3 ml; **0.6 ml enzyme.
WORKING GROUP 2.
Spruce fibre balloon swelling in phosphoric acid [6,7].
Figs 5-6: Polarized light microscopy, S2 and S3 cell walls are shown in Fig. 6.
cellulose and wood fibres. Another line of investiga-
tion is to use Raman spectroscopy to see whether
phosphoric acid is converting cellulose I to cellulose
II in bleached fibres [11].
HCl-effects on Eucalyptus and birch pulp fibres
were also tested [12]. These results indicate that birch
kraft pulp fibres (ca 1 mm) are more resistant to HCl
than the 0.65 mm long Eucalyptus fibres. Despite
longer birch fibres, they were poorly cleaved as com-
pared with Eucalyptus fibres (cleavage 0.22-0.35 vs
0.835-1.40). Vessels and parenchyma may be involved
in these differences.
– The HCl-method can be used to determine
Spruce fibre balloon swelling in phosphoric acid [6,7].
dislocations and other weak points in different
Fig. 7. SEM micrograph of balloons and rolled off S1 "collars".
pulp fibre types and may be a complement to wet zero span measurements and other paper
– HCl penetrates deeply into the fibre cell walls,
while cellulases act mostly on the fibre surfaces
– Fibre length determination in Fibermaster or
and only penetrate the fibre to a certain extent
Kajaani or other instruments can be done in
in dislocations, that are supposed to be of a more
many paper and fibre research laboratories.
– Spruce pulp fibres are more sensitive to HCl
– Dislocation cleavage and/or cleavage of β-1,4-
than pine pulp fibres.
glucosidic bonds in cellulose by HCl or cellulase
– Pulp samples from fibre lines can be studied
give little sugar release and the amount of sug-
with the HCl-method.
ars cannot be used to differentiate between Mill
– Hemicellulose degradation by HCl seems to be
and Lab pulp fibres.
of importance for the differentiation between
– Fibre swelling and ballooning in phosphoric
Mill and Lab pulp fibres, while cellulases mainly
acid or copperethylenediamine coupled with
release glucose from the fibre surfaces causing
image analysis may be used for pulp fibre char-
decreased fibre width.
WORKING GROUP 2.
[6] Ander, P. Dislocations and balloon swelling
in spruce kraft pulp fibres – Effect of cellu-
This research was supported by WURC, Wood
lases, xylanase and laccase/HBT. Progress in
Ultrastructure Research Centre, established at SLU and
Biotechnology 21, BIOTECHNOLOGY IN THE
supported by VINNOVA and the following eight Swed-
PULP AND PAPER INDUSTRY: 8th ICBPPI. Eds:
ish pulp & paper companies: Holmen, Korsnäs, Kappa
L. Viikari and R. Lantto, Elsevier Science B.V.,
Kraftliner, M-real, SCA, StoraEnso, Sveaskog and Södra
Cell and the chemical company Eka Chemicals. Many
[7] Ander, P. and Daniel, G. Morphology of spruce
thanks to Lars Hildén, Holmen Paper & CRUW for the
fibre dislocations as studied by balloon swell-
gift of Novozyme cellulases and for valuable discus-
ing and acid cleavage – light and electron
sions regarding cellulase testing.
microscope observations. COST Action E20, "Wood Fibre Cell Walls: Methods to Study Their Formation, Structure and Properties",
Eds: U. Schmitt, P. Ander, J.R. Barnett, A.M.C. Emons, G. Jeronimidis, P. Saranpää, and S.
[1] Ander P., Daniel G., Garcia-Lindgren C. and
Tschegg. Swedish University of Agricultural
Marklund A. Characterization of industrial
Sciences, Uppsala, Sweden. ISBN 91-576-
and laboratory pulp fibres using HCl, Cellu-
6803-5, pp. 203-215 (2004)
lase and FiberMaster analyses. Nordic Pulp
[8] Ander, P. and Daniel, G. A novel method
and Paper Res. J. 20 (1) 115-120 (2005)
to compare industrial and laboratory pulp
[2] Ander P. and Daniel, G. 2006. Dislocation
fibres using hydrochloric acid and Fibre-
counting and comparison of pulp fibre
Master analyses. Proc. Eighth European
properties after HCl-treatment and fibre
Workshop on Lignocellulosics and Pulp.
length determination. Proc. 5th Plant Bio-
August 22-25, 2004, Riga, Latvia, pp. 49-52.
mechanics Conference, Stockholm, Vol.
ISBN 9984-19-611-9 (2004)
I. August 28 – September 1, 2006. Ed.: L.
[9] Eckhart, R., Hirn, U., Eichinger, R., Bauer, W.
Salmén. STFI-Packforsk, Stockholm, Swe-
Practical application of a new method to
den, ISBN 91-86018-12-4, pp. 169-174.
evaluate mechanical and chemical dam-
[3] Ander P. and Daniel, G. 2007. Degradation of
age of pulp fibres. 32nd Internat. DITP Symp.,
softwood pulp fibres by HCl and Cellulases
Bled, Slovenia 9-10 Nov. 2005.
reflects different action on cellulose and
[10] Le Moigne, N., Pannetier, C., Höfte, H.,
hemicelluloses. The Third Workshop on Cel-
Navard, P. Swelling and dissolution mecha-
lulose, Regenerated Cellulose and Cellulose
nisms of natural cellulose fibres. The Third
Derivatives. Karlstad University, Karlstad,
Workshop on Cellulose, Regenerated Cel-
November 13-14, 2007, p. 36-40. Available at
lulose and Cellulose Derivatives. Karlstad
KaU Karlstad, KTH Stockholm, SLU Uppsala
University, Karlstad, November 13-14, 2007,
and STFI-Packforsk Stockholm.
p. 24-25, and pers. comm. with Nicolas Le
[4] Ander, P., Hildén, L., and Daniel, G. Cleavage
Moigne Nov. 2007.
of softwood kraft pulp fibres by HCl and Cel-
[11] Ander, P., Vig, A., Szabo, A.Unpublished
lulases. Bioresources 3 (2) 477-490. (2008)
[5] Steenberg, B. Beating process studied by
[12] Ander, P. Effects of phosphoric and hydro-
fiber swelling. Svensk Papperstidning 50:
chloric acids on kraft pulp fibres. COST
11B, 155-163 (1947)
Action E54, Graz, Austria, 10-11 April 2008.
WORKING GROUP 2.
Ramesh-Babu Adusumalli, Patrick Schwaller, Johann Michler
Anyagmechanikai és nanostruktúra laboratórium
Empa – Anyagtechnika & Technológia
Feuerwerkerstr. 39; CH-3602 Thun, Svájc
Telefon: +41 33 228 2996; Fax: +41 33 228 4490
Különböző típusú
rost vizsgálatok nem hoztak ígéretes ered-
rostanyagokat, bele-
ményeket. Az egyedi rost sejtfalának MTS
értve fenyő-, lombos,
Nano indenterrel [alakváltozást, bemélyedést
fehérített és fehérítet-
mérő szerkezet] végrehajtott keménységi
len cellulózokat vetet-
vizsgálata a sejtfal elhelyezésének nehéz-
tünk alá szakítási vizs-
sége miatt nem volt sikeres. Jelenleg a
gálatoknak. Az egyedi
sejtfal keménységét Tribo nanoindenterrel
rostok vizsgálatához
mérjük, amelyre AFM van felszerelve, és a
papírkeretbe rögzített
rost hosszanti irányában a bemetszéseket
rostokat alkalmaz-
MTS nanoindenterrel végezzük, és mindket-
tunk. A cellulózrostok
tő kiváló eredményeket mutatott az előzetes
törékeny természete miatt a javasolt egyedi
Micromechanics of single pulp fibres
Ramesh-Babu Adusumalli, Patrick Schwaller, Johann Michler
Mechanics of Materials and Nanostructures Laboratory
Empa - Materials Science & Technology
Feuerwerkerstr. 39; CH-3602 Thun, Switzerland
Phone: +41 33 228 2996; Fax: +41 33 228 4490
Pulps of various grades including softwood, hardwood, bleached, unbleached were
subjected to tensile testing. Paper frame set-up was adopted to test the single pulp fibres. Due to the brittle nature of pulp fibres, proposed single fibre tests did not yield promising results. Hardness measurements on single fibre cell-wall using MTS Nano indenter were not successful due to the difficulties in locating the cell-wall. Presently cell-wall hardness is measured using Tribo nano indender equipped with AFM and indents on the fibre longitudinal direction is performed using MTS Nano indenter, both revealed excellent results during preliminary tests.
Az egyedi rost-rost kötések
kötési felületének mérése
Lisbeth Kappel1, Ulrich Hirn1, Wolfgang Bauer1, Robert Schennach2
Grazi Műszaki Egyetem
1Papír- Cellulóz- és Rosttechnológiai Intézet
Papírszilárdság felületi kémiai és fizikai alapok CD-Laboratóriuma
Kopernikusgasse 24/II 8010 Graz
2Szilárdtest Fizikai Intézet
Papírszilárdság felületi kémiai és fizikai alapok CD-Laboratóriuma
Petersgasse 16/II 8010 Graz
Ez az előadás az
Minden egyes vágásnál képelemzéssel
egyedi rost-rost kötések
határoztuk meg azt a vonalat, ahol a rostok
kötési felületének meg-
érintkeznek, és megmértük ennek hosszát.
határozási módszerét A kötési területet úgy számítottuk ki, hogy a mutatja be mikrotommal
kötésvonal hosszát megszoroztuk a vágás vas-
történő sorozatos sze-
tagságával (3 µm).
letelés és képelemzés
A kötési terület mellett a rostok számos mor-
alapján. A kötési terü-
fológiai paraméterét és kötési területét mértük
let méretét és három-
képanalízissel. A rostkeresztmetszet, a rostke-
dimenziós struktúráját
rület, rostfal vastagsága, a rost összeomlása, a
a keresztmetszeti rost-
rost szélessége, és a nem tökéletes kötés foka
Lisbeth Kappel
morfológiával együtt átfogó képet adnak a rost-rost kötésről.
értékeltük. A lyukakat és
87 rost-rost kötést elemeztünk lineáris korre-
átfedett, de nem kötött éleket pótlólag mértük.
lációval, amely megmutatta, hogy a rostszélesség
Az egyedi rost-rostkötések hidegen polime-
ad magyarázatot a kötési terület majdnem 50%-
rizálódó gyantába vannak beágyazva. Kezelés
ára. Ugyanakkor a többi morfológiai paraméter
után a kötési terület háromdimenziós struktúráját
(rostfal vastagsága, rostkerület, rostkeresztmet-
elemeztük automatikus mikrotom rendszer alkal-
szet területe), 2 rost keresztezésének szöge és a
mazásával. A mikrotommal három mikrométer
nem tökéletes kötés is fontos szerepet játszanak,
vastagságú szeleteket vágtunk le, és a vágási
és nem hagyhatók figyelmen kívül. Ezek az ered-
területet minden egyes vágás után automatiku-
mények csak egyszerű korreláción alapulnak,
san megjelenítettük. Ez a rost keresztmetszeté-
a további elemzésekhez lineáris regressziós
ből számos képet eredményez, amely a rost-rost
modellezést kell végezni, hogy megtaláljuk a
kötés háromdimenziós alakját reprezentálja.
kölcsönkapcsolatokat és redundanciákat.
ORGANIZATORTechnical Association of Paper and Printing Industry – [email protected] – www.pnyme.hu
WORKING GROUP 2.
Measuring the bonded area of
individual fiber-to-fiber bonds
Lisbeth Kappel1, Ulrich Hirn1, Wolfgang Bauer1, Robert Schennach²
Graz, University of Technology
1Institute for Paper, Pulp and Fiber Technology
CD-Laboratory for surface chemical and physical fundamentals of paper strength
Kopernikusgasse 24/II 8010 Graz
²Institute for Solid State Physics
CD-Laboratory for surface chemical and physical fundamentals of paper strength
Petersgasse 16/II 8010 Graz
Analysis of geometrical and morphological parameters of 87 single fiber-to-fiber bonds will
This paper presents a method for the deter-
help to explain the governing factors for the size
mination of bonded area of single fiber-to-fiber
of bonded area.
bonds, based on microtome serial sectioning and image analysis. The size and three dimen-sional structure of the bonded area are assessed
Measurement of bonded area
together with cross sectional fiber morphology. Holes and overlapping but unbonded edges are
The method for the determination of the
bonded area is based on microtome serial sec-
87 fiber-to-fiber bonds of unbleached and
tioning and image analysis. It yields the size of
unbeaten softwood Kraft pulp were analyzed.
bonded area together with the three-dimension-
Correlations between bonded area and mor-
al structure of the bonded area and morphologi-
phological parameters show influences on size
cal fiber parameters.
of bonded area. In this study only single correla-
The samples are embedded in a gelatine
tions were performed, so linear modelling and
capsule using a cold-polymerizing resin. After
analysis of interrelations and redundancies will
curing, the three dimensional structure of the
be part of future work.
bonding region is analyzed using an automated
microtomy system [1]. Slices with a thickness of
3 µm are repeatedly cut off the embedded sam-
ple with the microtome and the cutting area is imaged automatically after every cut with a pixel
Paper strength depends on the strength of
size of 0,161 µm. This yields a stack of images of
single fibers and the strength of the fiber-to-
the fiber cross section, representing the three-
fiber bonds. The strength of the fiber-to-fiber
dimensional shape of the fiber-to-fiber bond.
bonds again depends on the size of the bond-
Three exemplary light microscope images
ed area and on the specific bonding strength.
at different cutting positions are given in Fig. 1.
Measuring the actual size of the bonded area
The first image (a.) shows the edge of the bond,
helps to understand the governing factors for
the fibers contact region is small. The left fiber
fiber-to-fiber bond strength. In this study we
is fully collapsed and folded, the right fiber on
investigate the distribution of the bonded area
the other hand is fully collapsed and unfolded.
for individual fiber-to-fiber bonds. We propose
The following two images (b. and c.) proceed
a novel method for the determination of bonded
deeper into the bond. Because of the irregular-
area based on microtome serial sectioning.
ity of the fold the contact between the fibers is
WORKING GROUP 2.
Fig 1 a., b., c.: Microscope images of fiber-to-fiber bond cross sections. d.: Segmented fibers of c. with bonding line.
e.: 3-dimensional representation of bonded area by plotting the bonding lines.
interrupted. Fig. 1 (b.) shows, that the fibers are
dure described by [2]. Fiber cross sectional area,
only partly bonded. In the upper part of the bond
fiber perimeter, fiber wall thickness, fiber col-
the fibers are separated. In the next image (c.)
lapse, fiber width and incomplete bonding give a
the fibers are in contact over a greater length,
comprehensive picture of the fiber-to-fiber bond.
but the contact is interrupted.
Segmentation of the fiber regions is per-
formed by the operator, the fiber outline is drawn
into the microscope image by hand (Fig. 1 d.).
From these fiber outline images the mor-
Bonded area and morphological parameters
phology of the bonding region and the fibers is
of 87 fiber-to-fiber bonds of unbleached unbeat-
determined using image analysis.
en softwood Kraft pulp were analyzed. We tried
For bonded area measurement we consider
to find linear correlations between bonded area
these fiber regions to be bonded, where the
fibers in the microscope images are in direct
The mean value for bonded area is 1130
contact. This region is determined image ana-
µm² and standard deviation is 602 µm². Fig.
lytically, yielding a bonding line for every cut, as
2 shows a histogram of all values for bonded
it is indicated by the white line in Fig. 1 (d.).
area, the distribution is positively skewed.
Bonded area is calculated from bond line
length multiplied with the cut thickness (3 µm). A 3-dimensional representation of the bonding region is obtained by plotting all lines of one bond (Fig. 1e.). The rightmost line corresponds to the length where the fibers were in contact in the first cut (a.). The line which is marked gray belongs to the cut of the label image (d.). The interruption caused by the fold of the left fiber can be seen. The distance between the lines is equivalent to the cut thickness (3 µm).
In addition to bonded area several morpho-
logical parameters of fibers and bonding region
Fig. 2 Histogram of values for bonded area, mean=1130
are measured image analytically using a proce-
µm², variance=602 µm², skewness=0.9495.
WORKING GROUP 2.
Determining factors for bonded area
ing in Fig. 4 illustrated this relationship. Bigger
fiber width leads to larger bonded area.
The influencing factors on the size of bond-
The influence of fiber width is also reflected
ed area will be discussed in the following sec-
in fiber perimeter (Fig. 3c), as bigger fiber width
tion, based on the results for bonded area and
leads to a bigger fiber perimeter. The same
morphological parameters.
correlation is also valid for fiber cross sectional
Fig. 3 shows correlations between bonded
area and morphological parameters, the R²
Incomplete bonding (Fig. 3d) also seems to
value is given in each diagram.
be important for the size of bonded area. This
Fig. 3 (a) shows that fiber width has the big-
shows that only consideration of morphologi-
gest impact on size of bonded area. The draw-
cal fiber parameters is not enough, as in some
Fig. 3 Correlations between bonded area and morphological parameters (fiber width, fiber cross sectional area, fiber perimeter,
incomplete bonding, fiber wall thickness and crossing angle)
WORKING GROUP 2.
cases quite large unbonded areas have to be
fiber morphology and bonded area morphology
might contribute to a comprehensive under-
Fiber wall thickness (Fig. 3e) is closely relat-
standing of fiber-to-fiber bonding.
ed to conformability. Summerwood fibers with a
The analysis of 87 fiber-to-fiber bonds
thick fiber wall cannot conform so well to each
showed that fiber width explains almost 50 % of
other and so bonded area gets smaller, though
bonded area. Also other morphological param-
the influence is far smaller than the influence of
eters (fiber wall thickness, fiber perimeter,
fiber cross sectional area), crossing angle and
The deviation of the crossing angle from
incomplete bonding play an important role and
right angle also has an influence on size of
have to be considered.
bonded area (Fig. 3f). Bigger deviation from
Please note that only single correlations
right angle leads to bigger bonded area, as can
were analyzed in this study. Linear modeling
also be seen in Fig. 4.
will have to be performed in order to investigate interrelations and redundancies.
The method introduced in this paper seems
to be a useful tool to investigate bonded area
The authors want to acknowledge Mondi
together with the morphology of the fiber cross
Group and the Christian Doppler Society for
sections and the bonding region. The method is
funding this work.
able to measure incomplete bonding (holes and overlapping but unbonded regions at the border of the bond). This combined measurement of
[1] Wiltsche, M., Donoser, M., Bauer, W. and
Bischof, H.: A New Slice-Based Concept for 3D Paper Structure Analysis Applied to Spatial Coating Layer Formation, in Advanced in Paper Science and Tech-nology, Fundamental Research Sympo-sium, Cambridge, 853 (2005)
[2] Kritzinger, J., Donoser, M., Wiltsche,
M. and Bauer, W.: Examination of Fiber Transverse Properties Based on a Serial Sectioning Technique, Progress in Paper Physics Seminar Proceedings, Helsinki,
Fig. 4 Influence of fiber width and crossing angle
on size of bonded area.
3.MUNKACSOPORT – Rostok finomszerkezetének hatása papírképző tulajdonságaikra, valamint kémiai és enzimatikus reaktivitásukra
Rostanyagok víztelenítése és az őrlés
hatékonyságának javítása celluláz kezeléssel
Ivo Valchev, Petar Bikov
Kémiai Technológiai és Fémipari Egyetem
8KL Ohridski, 1756 Szófia, Bulgária
e-mail: [email protected]
rostanyaggal, a „Mayr-Melnhof" AD –Nikopol által biztosított festéktelenített rostanyaggal, a Svilocell AG által biztosított fehérített cellulózzal, valamint fehérített brazil eukaliptusz rostanyaggal végeztük.
Az enzimes kezelést a Novozymes AS
FiberCare® D celluláz termékével végeztük, amely nagyon hatékony, de ugyanakkor kíméletes a ros-tokkal.
0,05–0,2% enzim 20–45%-kal javítja az OCC-
rostanyag víztelenedését, illetve max. 25%-kal az őrlésfokot. Nagyobb négyzetmétertömegű
Ivo Valchev
Petar Bikov
termékek gyártásában a szárító gőzfogyasztása akár 4%-kal is csökkenhet. Az enzimes kezelés
A papír- és karton gyártásában a leginkább
kapott eredményeit a másodlagos rostok kol-
energiaigényes folyamat az őrlés és a rostanya-
loid anyagainak részleges destrukciójával lehet
gok szárítása. A celluláz termékek alkalmazása
értelmezni. Ez a gélfrakció megtartja a vizet,
az egyik legkorszerűbb módszer a víztelenítés és
és a másodlagos rostok lassú víztelenedését
az őrlés hatékonyságának javítására. Ha az őrlés
okozza. A hulladékpapír FiberCare® D kezelése
előtt adagolunk enzimet, annak hatása eltérő
lassan növeli a rostanyag szakadási hosszát, míg
lesz az őrlés utáni kezelés hatásától. Az őrlés
a tépő- és repesztési mutató csökken.
előtti alkalmazás jobb őrlési hatékonyságot
Az „Mayr Melnhof" AD által szállított fes-
eredményez, míg az őrlés utáni kezelés nagyobb
téktelenített rostanyag víztelenedésében vizs-
őrlésfokot eredményez. Tény, hogy a celluláz
gált cellulázhatás kisebb enzimaktivitást mutat,
a gél formájú struktúrák lebomlásához vezet.
amely nagyobb FiberCare® D terhelést tesz szük-
Ezeket a víztelenedés javítására lehet alkalmazni
ségessé ugyanolyan víztelenedés eléréséhez.
hidrolízis révén a rostokban, finomanyagokban
Az oldatban a redukált cukrok vizsgálatának
és oldott kolloidanyagokban jelenlévő cellulóz-
eredményei körülbelül 0,4-0,5%-os rostvesztesé-
és hemicellulóz leginkább hozzáférhető részei-
get mutatnak, ami a kolloid anyagok oldódásával
ben. A megfelelő módon alkalmazott cellulázok
kapcsolatos. A papír minőségek és a rostanyag
növelhetik vagy helyreállíthatják a rostszilárdsá-
víztelenedése közötti optimális egyensúlyt ala-
got, csökkenthetik az őrlési időt, és növelhetik a
csony szintű enzimterhelésnél lehet elérni.
rostok közti kötést fibrilláción keresztül.
A FiberCare® D hatása az őrlés előtti kémiai
Ennek a munkának a célja az, hogy vizs-
rostanyagkezelésben elősegíti az őrlésfok növe-
gáljuk az új celluláztermékeknek az őrlésre, a
kedését 14°SR-rel eukaliptuszra, és 24°SR-rel a
víztelenedésre és a rostanyag szilárdsági tulaj-
Svilocell rostanyagára. Az enzimadagolásnak a két
donságaira gyakorolt hatását.
rostanyag típus szilárdsági tulajdonságaira gyako-
A vizsgálatokat a Bulgáriából, az „Duropack-
Trakia-Papír" AD – Pazardjik által biztosított OCC
Folyt. 254. oldalon
WORKING GROUP 3. – The impact of the fine structure of fibres on their papermaking
properties and their chemical and enzymatic reactivity
Pulp dewatering and refining efficiency improvement
by cellulase treatment
Ivo Valchev, Petar Bikov
University of Chemical Technology and Metallurgy
8 Kl. Ohridski, 1756 Sofia, Bulgaria
e-mail: [email protected]
post-refining treatment results in increased furnish freeness. A combination of the two can provide opti-
Refining and pulp drying are the most energy-
mized strength and drainage benefits [1]. Beating
intensive processes in the production of paper and
and refining are mechanical processes that enhance
boards. The usage of cellulases products is one of
fibrillation and inter-fiber bonding. Properly applied,
the modern methods to improve dewatering and
cellulases can enhance or restore fiber strength,
reduce beating times, and increase inter-fiber bond-
The enzyme treatment was performed with the
ing through fibrillation. A correctly applied enzyme
Novozymes AS cellulase product FiberCare® D.
treatment provides a tool that can improve recycled
The carried out investigation shows the positive
paperboard operations. This is accomplished by treat-
effect of enzyme treatment on the secondary fiber
ing the refined stock with an enzyme blend to recov-
dewatering. The obtained results of enzyme action
er a portion of the freeness typically lost through
can be interpreted by partial destruction of colloidal
refining. A pre-refining enzyme treatment can help
substances of secondary fibers.
the papermaker meet strength tests more readily
The effect of enzyme treatment on the pulp
through improved refining efficiency. Mill experience
strength properties shows insignificant increasing of
has shown that a combination of these two methods
breaking length, while the tear index and the burst
can provide strength and drainage benefits.
index decrease. Probably the FiberCare® D action at low
Distinguishing feature of secondary fibers is the
enzyme charge contributes an improvement on the
breaking down of cell walls, causing liberating fine
paper structure independent of fiber destruction proc-
particles, which grow swollen and change in gel form.
esses. Optimal balance between paper qualities and
They retain water, slow down the dewatering, impede
pulp dewatering is reached at low level enzyme charge.
drying, and causes over consumption of chemicals in
The pre-refining cellulase treatment of Svilocell
the paper production. It is a standing fact that cel-
and eucalyptus bleached pulp significant improves
lulase lead to breaking down the gel form structures
beating efficiency without pulp strength properties
[1, 2]. They can be applied to improve the drainage by
loss. The influence of enzyme treatment on the pulp
hydrolyse the most accessible parts of the cellulose
yield and waste water pollution are not significant.
and hemicellulose present in the fibers, fines and dis-
FiberCare® D is able to waste paper dewatering
solved colloidal substances [3].
improvement and is a prerequisite for dryer steam
Jackson et al. [4] suggest that enzymes can
consumption decreasing, refining energy costs sav-
either flocculate or hydrolyse fines and remove
ing and paper machine capacity increasing.
fibrils from the surface of large fibres. According to these authors, the enzyme-aided flocculation occurs when a low enzyme dosage is used. In this case, fines
and small fibre particles aggregate with each other or with the larger fibres, decreasing the amount of
Cellulase pulp treatment has been investigated
small particles in the pulp and consequently improv-
for several years, with the goal of achieving improved
ing pulp drainage. For higher enzyme concentra-
refining efficiency and fibre dewatering. There are two
tion, flocculation becomes less significant, and
methods for enzyme treatment. Addition of enzyme
fragmentation of the fibres begins to predominate.
prior to refining has a very different effect compared
Numbers of authors observe pulp strength proper-
with a post-refining treatment. Pre-refining applica-tion results in improved refining efficiency, while a
Cont. p. 255
rolt hatását vizsgálva javulást mutattak ki a szaka-
A másodlagos rostanyagok FiberCare® D
dási hosszban, míg a tépési mutatóra a FiberCare®
celluláz kezelésével folytatott vizsgálatok lehe-
D alacsony mennyiségben nem gyakorolt negatív
tőséget mutatnak a rostanyag víztelenedésének
hatást. Azt is megfigyeltük, hogy az eukaliptusz
rostanyag 40°SR őrlésfokát 20 perccel hamarabb
Optimális enzimadagolás mellett a szakadási
értük el FiberCare® D kezeléssel. Ugyanakkor a
hossz javulását figyeltük meg, mivel a celluláz
rostanyag szilárdsági tulajdonságainak függése
főleg az oldott kolloidanyagokra van hatással, és
a tépési mutatók és a szakadási hossz esetében
csak enyhén csökkenti a rostanyaghozamot.
hasonló. Ezért az elért jelentős őrlésjavulás adott
A FiberCare® D-hatékonyság a másodlagos rostok
őrlésfokon, FiberCare® D kezeléssel 0,05%-os ala-
típusától függ, és az enzimaktivitás töltőanyagok és
csony enzimadagolás mellett nem befolyásolja
rostanyag-adalékok jelenlétében csökken. Az őrlés
a rostanyag szilárdsági tulajdonságait, melyeket
előtti enzimes kezelés lényegesen javítja az őrlés
kisebb őrlési energiaigénnyel is el lehet érni. A
hatékonyságát anélkül, hogy rontaná a rostanyag
FiberCare® D optimális adagolása mellett (0,025%
szilárdsági tulajdonságait. Az enzimeknek a rost-
a Svilocell rostanyag és 0,05% az eukaliptusz rost-
anyag őrlésére vagy a papírhulladék víztelenedésére
anyag esetében) 0,2%-nál kevesebb cukor kelet-
gyakorolt hatásának kialakítása előfeltétele annak,
kezik. Ezért az enzimes kezelés eredményeként a
hogy csökkenjen a szárító gőzfelhasználása, illet-
hozamveszteség és a szennyvíz szennyezettsége
ve őrlési energiaköltség-megtakarítást és papírgépi
kapacitásnövekedést tudjunk elérni.
WORKING GROUP 3.
ties decreasing by rise of enzyme quantities and by
Pulp beating was performed with Jokro mill
increase reaction time [5, 6, 7].
according to ISO 5264-3 at duration from 10 to 50
Surface properties may be modified, not only
because of enzymatic hydrolysis of the outer layers
The degree of refining was determined on the
of the fibre, but also because of the adsorption of
Schopper Riegler device according to ISO 5267. The
enzyme molecules onto the fibre surface. It could
rate of dewatering was determined on the same
be speculated that changes in fibre–water interac-
tion, induced by the presence of enzyme molecules,
Pulp strength properties: breaking length, tear
might be the factor responsible for drainage and
index and burst index were determined according
strength modification [8].
to the ISO 1924, ISO 1974 and ISO 2758 respec-
The purpose of this work is to investigate the
effect of the new cellulase product on the refin-ing and dewatering improvement and on the pulp strength properties.
Results and discussion
The effect of FiberCare® D treatment on the
dewatering time and refining degree of Duropak
- Trakia-Papir OCC pulp is shown on Fig. 1 and Fig.
The investigations were performed with OCC
2. The enzyme charge 0.05–0.2% improves the
pulp supplied by "Duropak – Trakia-Papir" AD
pulp dewatering by 20–45% and refining degree
– Pazardjik, deinking pulp provided by "Mayr-Mel-
up to 25% respectively. In the production of the
nhof" AD – Nikopol, bleached pulp supplied by
heavier weight, dryer steam consumption is able to
Svilocell AD – Bulgaria and with bleached Brazilian
decreased by over 4%.
eucalyptus pulp.
The obtained results of enzyme action can be
The enzyme treatment was performed with the
interpreted by partial destruction of colloidal sub-
Novozymes AS cellulase product FiberCare® D, which
stances of secondary fibers. That gel fraction retains
is designed to be effective, yet gentle on fibers. This
water causing slow dewatering of secondary fibers.
is accomplished because FiberCare® D takes advan-
Similar study of cellulase action on the pulp
tage of Novozymes' proprietary mono-component
dewatering is conducted with deinking pulp sup-
cellulase technology, resulting in a product that is
plied by "Mayr-Melnhof" AD. Typical feature of that
highly specific and targeted in its action.
pulp is the present of fillers (basic CaCO3), pulp
The enzyme treatment conditions were as fol-
additives and mechanical fibers. It is found a lower
lows: pulp consistence 6 and 10%, temperature
enzyme activity with respect to that pulp, which
60°С, reaction time 60 min., enzyme charge 0.025
determines on the higher FiberCare® D charge for
– 0.5 % and pH 4 – 7.
achievement the same dewatering.
The reducing sugars were determined according
The effect of enzyme treatment on the pulp
to a DNS method [8].
strength properties is present in Table 1. As it is
Fig 1. Influence of enzyme charge on the pulp dewatering rate,
Fig 2. Effect of enzyme charge on the pulp refining degree,
(pH 5, T=60°C and t = 60min)
(pH 5, T=60°C and t = 60min)
WORKING GROUP 3.
Duropak - Trakia-Papir OCC pulp
Mayr-Melnhof – Nikopol deinking pulp
Table 1. Effect of FiberCare® D charge on the waste paper strength properties
Fig. 3. Influence of enzyme charge
Fig. 4. Effect of enzyme treatment (pH 4.5, T=60°C, t=60min)
on the refining efficiency
on the rate of eucaliptus pulp beating
Svilocell pulp, pH 6.5, T=60°C, t = 60min
Eucaliptus pulp, pH 4.5, T=60°C, t = 60min
Table 2. Influence of pre-refining cellulase charge on the pulp strength properties
Fig. 5. Influence of enzyme treatment on the eucalyptus pulp
Fig. 6. Effect of enzyme charge on
breaking length - tear ind. dependence
the reducing sugars formation
WORKING GROUP 3.
shown the breaking length slowly increases by the
It is observed breaking length improvement in
enzyme charge, while the tear index and the burst
the optimum enzyme dosage as the cellulase affects
index decrease. Probably the FiberCare® D action at
mainly on the dissolved colloidal substances and
low enzyme charge contributes an improvement on
slightly reduces the pulp yield.
the paper structure independent of fiber destruc-
FiberCare® D efficiency depends on the type of
secondary fibers and enzyme activity decreases on
The results of analysis of reduced sugars in the
the presence of fillers and pulp additives.
solution show fiber losses about 0.4–0.5 % which
The pre-refining enzyme treatment significantly
are connected with dissolving of colloidal substanc-
improves beating efficiency without pulp strength
es. Optimal balance between paper qualities and
properties deterioration. At optimal FiberCare® D
pulp dewatering is reached at low level enzyme
dosages 0.025%–0.05% the yield loss and waste
water pollution are not significant.
It is studied the effect of cellulase charge in
Established enzyme effect on the pulp beating
pre-refining chemical pulp treatment on the pulp
or waste paper dewatering is a prerequisite for dryer
beating efficiency. The results obtained for the two
steam consumption decreasing, refining energy
types of bleached pulp, presented in Fig. 3, show a
costs saving and paper machine capacity increas-
total refining degree increase with 14°SR and 24°SR
for eucalyptus and Svilocell pulp respectively. The performed investigation on the effect of enzyme charge on the strength properties of the two types
of pulp show improvement on the breaking length, while the tear index is not adversely affected by
[1] Braian R. Morgan: Enzyme treatment
FiberCare® D at low dosage (Table 2).
improves refining efficiency, recycled fiber
The influence of enzyme action on the rate of
freeness, Pulp and Paper, 9 119-121 (1996)
eucaliptus pulp beating can be seen on the Fig.
[2] Skartaunm P., Reinhardt B., Trasser G.
4. It is observed that pulp refining degree 400SR is
– Enfluss der Enzyme als Entwaesserungs
reached for 20 min. less in the case of FiberCare® D
– und Hilfsmittel bei der Mahlung in der
treatment. In the same time the pulp strength prop-
Papierindustrie, PTS – VB 02/95 – PTS-TUD-
erties dependence between tear index and break-
Symposium "Zellstofftechnik fuer Papier" ,
ing length is a common relation for enzyme treated
1995, 5, Dresden.
and untreated pulp. (Fig. 5).
[3] Valtschev I, Bentscheva S., Christova E., Ein-
Therefore the obtained significant beat-
fluss der enzyme bei der veredlung von
ing improvement to a given refining degree by
sekundaerfaserstoffen, Wochenblatt für
FiberCare® D treatment at low enzyme dosage up
papierfabrikation, 20 1348-1351 (2001)
to 0.05% is not affected on the pulp strength prop-
[4] Jackson, L. S., Heitmann, J. A. and Joyce, T.
erties, which can be developed with less refining
W. "Enzymatic modifications of secondary
energy requirements.
fibre", Tappi Journal 76 (3), 147–154 (1993)
The obtained reducing sugars as a result of cellu-
[5] Miletky F. Biotechnology in pulp and paper
lase treatment are in the range up to 0.4 % based on
industry, Viena, Austria, 11-15 June, 1995.
pulp in relation of enzyme charge and type of pulp
[6] Scott L. Jackson, J. A. Heitman, T. W. Joyce,
(Fig. 6). At optimal dosage of FiberCare® D (0.025%
Enzymatic modification of secondary fiber,
for Svilocell pulp and 0.05% for eucaliptus pulp) the
Tappi, 76 (3) 147-154 (1993)
generated sugars are less of 0.2%. Therefore in the
[7] Stock G., H. Pereira, T. Wood, E. Dusterhoft,
result of enzyme treatment the yield loss and waste
Upgrading recycled pulps using enzymatic
water pollution are not significant.
treatment, Tappi 78 (2) 79 (1995)
[8] Pala H., M. Mota and F.M. Gama, Enzymat-
ic Modification of Paper Fibres, Biocataly-
sis and Biotransformation, 20 (5), 353-361 (2002)
The carried out investigations on cellulase treat-
[9] G. Miller, Use of Dinitrosalicylic Acid Reagent
ment of secondary fiber materials by FiberCare® D
for Determination of Reducing Sugar, Anal.
show opportunity for significant improvement of
Chem. 31 426-428 (1959)
pulp dewatering.
Hogyan hat az enzimes kezelés
a rost tulajdonságaira?
Michael Lecourt1, Pierre Nougier, Adrien Soranzo, Sandra Tapin-Lingua
and Michel Petit-Conil
FCBA, BP251, 38044 GRENOBLE Cedex 9, FRANCE
Az enzimek világ-
láncok irányában. Ez igazolta azt a feltevést,
szerte nagy mennyiség-
hogy ezek az enzimek meglehetősen tiszták,
ben és számos alkalma-
és hogy működésük a hemicellulózok irányában
zásban használt vegyi
korlátozott volt. A cellulázkoncentráció hatása a
anyagok. Ezeket első-
viszkozitás csökkenésében mutatkozott meg.
sorban az élelmiszer-
25%-os csökkenést figyelhettünk meg a leg-
iparban és mezőgaz-
alacsonyabb koncentrációnál. 1.000-szer több
celluláz adagolásával a viszkozitás megfelező-
Az enzimek előállításá-
dött. A cellulózlánc hasadása nem volt arányos
ban jelenleg végbement
az enzimkoncentrációval. Az enzimmobilitás és
fejlődés lehetővé tette,
a rost mentén a degradációra rendelkezésre álló
Michael Lecourt
hogy tiszta egynemű
helyek is szerepet játszottak és hatással voltak
komponenseket állít-
az enzim hatékonyságra. Őröletlen cellulóz
sunk elő. Így lehetővé vált az enzimek felhasz-
tulajdonságait mértük próbalapokon, ami jobb
nálása a rostelőállítás folyamataiban is.
kötési potenciált mutatott cellulázok alkalmazá-
Rostanyag szuszpenziókhoz különböző
sával, és tisztán mutatta a vízretenció értéknek
enzim típusokat adagoltunk annak érdeké-
növekedését. Eközben nagyobb fehérséget is
ben, hogy meghatározzuk, milyen lesz a hatás
mértünk hemicelluláz alkalmazásakor. Őrlés
az ilyen vegyszerekkel kezelt rostok eseté-
után a különbségek nőttek. Az alkalmazott
ben. A cellulóz viszkozitásváltozásait mértük
enzimtől függően a szakadási hossz maximum
eukaliptusz és fenyőfa cellulózokon. Az enzim
25%-kal volt magasabb, a tépési mutató 10%-
típusától függően a kezelés következményei
kal, hasonló energiafogyasztás mellett.
eltérőek voltak. A fenyőcellulóz viszkozitása volt a leginkább érintett cellulázzal történő kezeléskor, összehasonlítva az eukaliptusszal. A maximális veszteség fenyőnél 20% volt, míg az eukaliptusznál csak 10%. Minél több cellulázt adtunk hozzá, annál alacsonyabb lett a viszkozitás, ami a cellulózlánc gyakoribb hasadását jelenti. Ha azonban 3 cellulázt vizs-gáltunk, az egyiknek nem volt hatása a viszko-zitásra még nagyobb koncentráció esetén sem. Következésképpen elmondható, hogy a celluláz szó nem jelentette ugyanazt, a márkanévtől függően. Endo- és exo- glükanáz-aktivitást kell specifikálni annak érdekében, hogy azonosítani lehessen a celluláz alkalmazásának következ-ményeit. Eközben a vizsgált hemicelluláz csak korlátozott tevékenységet mutatott a cellulóz-
WORKING GROUP 3.
How do enzymatic treatments affect fibre
Michael Lecourt1, Pierre Nougier, Adrien Soranzo, Sandra Tapin-Lingua
and Michel Petit-Conil
FCBA, BP251, 38044 GRENOBLE Cedex 9, FRANCE
Unrefined pulp properties showed a better
bonding potential using cellulase and also a
Enzymes are catalysts used worldwide, in
clear increase in water retention value, reveal-
large scale and for many applications. They are
ing increased fibrillation and fibre hydration.
mainly used in food industry and in agriculture.
Besides, a higher brightness was enhanced by
Recent developments in enzyme production
hemicellulases treatment. Refining enhanced
made it possible to produce pure monocom-
differences. Depending on enzyme applied,
ponent. So that, it became possible to use
breaking length was increased by 25% and tear
enzymes in fibres production processes.
index by 10% for similar energy consumptions.
Different enzymes were added to pulp sus-
pensions in order to determine the impact on fibres characteristics, fibres structure and pulp
quality. Cellulose degree of polymerisation or pulp viscosity was also considered to under-
Enzymes are used in many processes. Main
stand the enzyme effect on fibre ultrastruc-
applications are in food industry (starch modifica-
ture. Depending on the enzyme type, conse-
tion, wine fermentation…), agriculture or chemis-
quences were different. Softwood pulp viscos-
try (chemical synthesis, fuel, bio-ethanol, …).
ity was the most affected by treatment with
Nowadays, various enzymes are intro-
cellulase compared to eucalyptus one. Maxi-
duced or are ready to be used in pulp and
mum losses were 20% and 10% for softwood
paper processes. Most advanced applications
and eucalyptus pulps, respectively. The more
are bleaching of virgin pulps, deinking, pitch
the cellulase charge, the lower the viscos-
control, effluent treatment and energy savings
ity, meaning the more cellulose chain cutting.
in mechanical pulping.
However, between the 3 tested cellulases,
The objective of this work was to study
one did not affect the pulp viscosity, even
the impact of various enzymes on commercial
at the highest charge. As a consequence, it
chemical pulps quality and fibre characteristics
could be said that "cellulase" name had not the
before and after refining.
same sense depending on production origin. Endo- and exo-glucanase activities should be specified in order to identify cellulase effects.
Materials and methods
Cellulose chain cutting was not proportional to enzyme concentration. Meanwhile, tested
Commercial bleached kraft pulps were con-
hemicellulases presented only limited action
sidered in this study: eucalyptus one and soft-
towards cellulose chains, confirming that those
wood one. Five commercial enzymes were used:
enzymes were rather pure and that their action
3 cellulases, 1 mannanase and 1 xylanase. Pulps
was limited towards hemicelluloses. Enzyme
were treated with the different enzymes at 40°C,
mobility and fibre locations available for deg-
pulp pH at 5% consistency for 30 minutes in a
radation played both role and impacted on
slusher. Pulp quality was analysed on Rapid
enzyme efficiency.
Köthen handsheets according to ISO standard.
WORKING GROUP 3.
Figure 1: Automatic viscometer supplied by Rheotek (UK)
Pulp intrinsic viscosity (SCAN method) was
The pulp drying method did not affect pulp
measured with an automatic viscometer sup-
viscosity. Besides, pulp viscosity measure-
plied by Rheotek (Figure 1).
ments were also unaffected by refining level.
Refining was carried out at low consistency
As a consequence, viscosities were assumed
with a 12" single disc refiner pilot plant in order
to be similar whatever drying method or refin-
to reach different drainage levels.
ing level. So that, it was decided to carry out the intrinsic viscosity measurements on hand-sheets.
Effects of enzymatic treatments on pulp vis-
cosity are presented in Figure 3 and Figure
Firstly, pulp viscosity was analysed on
4. Hemicellulase action was limited on pulp
eucalyptus kraft pulp at different refining lev-
viscosity. As expected, those enzymes did not
els and with two different drying methods
affect cellulose chains, because the main target
(Figure 2).
structure for hemicellulases are hemicelluloses.
If some small differences were observed, they
could be due to small amounts of cellulase that
may be contained in enzyme solution. In the
case of eucalyptus bleached kraft pulp (Figure
3), none of differences were significant. But
some trends were identified: the more the cel-
lulase A, the lower the viscosity. Results were
different with softwood bleached kraft pulp
(Figure 4) as significant differences between
cellulase A and B were found. A clear impact
of cellulase charge was also observed with cel-
lulase A, contrary to cellulase B. Cellulase E
did not affect this property. Therefore, cellulase
reaction mechanisms were different in these 3
cases. As these 3 cellulases solutions present
a similar action, it could be concluded that other
Figure 2: Comparison of pulp viscosity measured on air-
dried or sheetformer dried eucalyptus pulps
mechanism was involved and needed to be
WORKING GROUP 3.
Figure 3: Pulp viscosity obtained on eucalyptus bleached
Figure 4: Pulp viscosity obtained on softwood bleached Kraft
Kraft pulp after various enzymatic treatments
pulp after various enzymatic treatments
Figure 5: Breaking length of eucalyptus bleached kraft pulp
Figure 6: Breaking length of eucalyptus bleached kraft pulp
after enzymatic treatments before refining
after enzymatic treatments and refining (50kWh/t applied)
characterised. Cellulases activity and protein
did not affect significantly this property. After
composition seemed to be important param-
refining, a strong improvement was measured
eters to be considered.
and differences observed before refining were
Mechanical properties, and more particu-
changed (Figure 6). Hence, cellulase A at the
larly breaking length, measured on eucalyptus
lowest charge presented the highest breaking
kraft pulp before and after refining, confirmed
length. It was significantly improved compared
the observed differences in enzyme efficiency
to control and hemicellulases treatments, which
(Figure 5 and Figure 6).
all were similar. Other cellulase treatments led
Before refining, breaking length was affect-
also to an improvement, but at a lower degree.
ed by enzymatic treatments (Figure 5). Hence,
However, cellulase E showed the lowest break-
the highest improvements were obtained with
ing length. This was in agreement with that was
cellulase A and also mannanase treatment at
observed on pulp viscosity for softwood pulp
the highest concentrations. The other enzymes
treated with cellulase E.
WORKING GROUP 3.
whatever the applied charge was. The last one had a very limited impact compared to control,
In the enzyme treatment of kraft pulps, differ-
and even an opposite one.
ent behaviours of pulp viscosity were observed
As a consequence, the enzyme name was
depending on enzyme.
not sufficient to characterise an enzymatic solu-
For hemicellulases, their actions were rather
tion and its potential efficiency. An enzyme
limited. Viscosity measurements on eucalyptus
presents a specific action devoted to catalyse
and softwood bleached kraft pulps were not
the cleavage of a given structure linkage. The
significantly affected by either xylanase or man-
most common way to characterise the enzyme
nanase. In the case of eucalyptus kraft pulps,
activity is to evaluate the amount of sugar
impact on breaking length measured before or
released after treating the corresponding pure
after refining was rather limited, indicating that
component. For example, in the case of xyla-
the hemicelluloses had a lower impact on inter-
nase, enzyme activity to degrade xylose can be
fibre bonding.
evaluated by colorimetric method and modelled
For cellulases, totally different behaviours
at various pH and temperature (Figure 7).
were observed. Cellulases treatments had vari-
However, commercial bleached chemical
ous consequences on pulp viscosity, depending
pulps are composed of different polysaccha-
on their origins and treated substrate. Softwood
rides, cellulose and hemicelluloses, with in
kraft pulp was strongly affected: a maximum
some cases a very limited amount of residual
drop in viscosity of 22% was observed. Mean-
lignin. So that, the expected enzyme actions
while, for the same condition, eucalyptus kraft
might be precised in order to determine the
pulp presented a loss of 11% only. Among the 3
result to look after and to unexpected pulp
considered cellulases, none of them had a simi-
degradations. Cellulases and/or hemicellulases
lar behaviour. Hence, one cellulase impacted
could be interesting alternatives to enhance
differently pulp properties, depending on con-
the pulp properties and to save some electrical
centration. Another one led to the same results
energy during refining.
Figure 8: Dosage of xylanase activity by dosing sugar released after 1h treatment
Cellulózrostok finomszerkezetének viselkedése
Tiemo Arndt, Gert Meinl, Klaus Erhard
Pirnaer Str. 37, 01809 Heidenau, Germany
e-mail: Arndt, Tiemo<[email protected]
A papírszilárdsá-
(SSA) közötti korrelációra alkalmazott empi-
got, több más para-
rikus módszerrel határoztuk meg. Az MFC
méter mellett, a cel-
retenciót az eredeti rostháló és az SR mérése
lulózrostok finom-
után a dezintegrált rostháló SSA értékeinek
szerkezete is befolyá-
különbségéből határoztuk meg.
solja. Az őrlés során rostfibrilláció történik,
182.79 m²/g hidrodinamikai felületet szá-
és ez növeli a rostok
mítottunk az MFC-re. Az őrölt rosthoz 5%
felületét. Ez nem csak
MFC hozzáadásával a cellulóz felülete 3.6
a végső papírszilárd-
m²/g-ról 12.56 m²/g-ra nőtt. Az SSA-ből szár-
ságot befolyásolja, maztatva, az MFC retenciót 63,5%-ra becsül-
Tiemo Arndt
hanem a lapképzés
tük. A mért papírtulajdonságokkal kapcso-
során a víztelenedési
latban azt a következtetést vontuk le, hogy
tulajdonságokat is. Ebben a munkában a
az MFC viselkedése és hatékonysága nem
mikrofibrillált cellulóz (MFC) lapképzésre és a
hasonlítható össze az őrlés során keletkezett
végső papírtulajdonságokra gyakorolt hatását
finomanyagokkal, mert csak kisebb növeke-
vizsgáltuk. MFC hozzáadása után a Schopper-
dést észleltünk a látszólagos sűrűségben az
Riegler érték drámai növekedését figyeltük
MFC következtében. Az egyszerűsített refe-
meg. Ugyanakkor a papírszilárdság is növeke-
rencia rosthálózat alapján azonban a rostok
dett az MFC nanoméretű tulajdonságai miatt.
közti kötési szilárdságot 9 MPa-nál számí-
A papírlapok letapogató elektronmikroszkópos
tottuk 5% MFC adagolásakor, ami kétszer
vizsgálata megmutatta, hogy az MFC a ros-
annyi, mint a kiindulási anyagként használt
tok közötti kapcsolódási pontokon filmszerűen
aggregálódik. Nehéz azonban megérteni és megmérni ezeknek a cellulóz finomszerkeze-
Az alkalmazott modell-feltételezés és a
teknek a viselkedését a lapképzés során és
mért papírtulajdonságok alapján azt a követ-
a végső papírszerkezeten belül. Azért, hogy
keztetést lehet levonni, hogy az MFC a hidro-
több információt tudjunk feltárni a cellulóz
génkötések számában növekedéshez vezet a
finomszerkezeteinek viselkedéséről, egy fent-
kontakt területeken a rostok között a magas
ről lefelé történő megközelítést alkalmaztunk a
SSA miatt, mert a látszólagos sűrűségre és,
makro szintről a nanoszintre, a rostmorfológia,
ezzel együtt, az RBA-ra szinte semmi hatással
víztelenedési tulajdonságok és a Page egyen-
sincs az MFC. Ennek következménye a kötési
let alapján. A relatív kötési terület (RBA) és a
szilárdság növekedése. Az MFC viselkedé-
kötésszilárdság kiszámításához egy egysze-
se azonban bizonytalan és nehezen magya-
rűsített referencia rosthálózatot feltételeztünk.
rázható, mert a fényszórási tulajdonságok
Ennek a modellnek az alapján következtetést
csökkenése az RBA növekedését jelzi, főleg
lehetett levonni a hatékonyságról. A hidrodi-
a látszólagos denzitás növekedéséhez kap-
namikai felületet az SR és a fajlagos felület
WORKING GROUP 3.
Behaviour of cellulose fine structures in
Tiemo Arndt, Gert Meinl, Klaus Erhard
Pirnaer Str. 37, 01809 Heidenau, Germany
e-mail: Arndt, Tiemo<[email protected]
ing sheet forming. Fines are commonly defined as the fraction that passes through a 200 mesh
In this work the influence of microfibrillated
screen. The largest fines particles are fibre
cellulose (MFC) on sheet forming and final paper
fragments and the smallest are fibrils whose
properties was investigated. In order to reveal
size can be below 1µm. In this work we investi-
more information about the behaviour of these
gated the influence of micro-fibrillated cellulose
cellulose fine structures a top-down approach
(MFC) as a special cellulosic fine material on
from macro- to nano-scale was used based on
sheet forming and final paper properties. MFC
fibre morphology, dewatering properties and the
is completely different to commonly known pulp
Page equation. A hydrodynamic ´specific sur-
fines, because of its much smaller size and
face area (SSA) of 182.79 m²/g was calculated
the material properties associated with it. MFC
for MFC. By addition of 5% MFC to the refined
was invented by Herrick and Turbak in the
pulp the surface area of the pulp was increased
early 1980ies through mechanical disintegra-
from 3.6 m²/g to 12.56 m²/g. Derived from SSA,
tion of the fibre wall down to the cellulose fibril
MFC retention was estimated at 63.5%. In con-
aggregates as building blocks of the fibre wall
nection with the paper properties measured, it
[1, 2]. Since then many patents have been
was concluded that behaviour and effectiveness
granted and applications introduced on the
of MFC are not comparable with those of fines
basis of MFC. However, due to the high energy
produced during refining because only a minor
consumption for fibre wall homogenization, the
increase in apparent density was observed
preparation of MFC has been less attractive
due to MFC. However based on the simplified
in view of cost effectiveness. The main break-
reference fibre network the bonding strength
through for reducing the energy consumption
between fibres was calculated at 9 MPa for an
has been made by Lindström and co-workers
addition of 5% MFC, which is twice as much as
in recent years – by improving the pulp prepa-
in the pulp used as starting material.
ration before final homogenization [3]. Today
MFC is one of the most interesting nano-materi-
als not only to papermaking scientists, but also
in the field of composite materials.
Although MFC is also a cellulosic fine mate-
The paper strength is influenced, among
rial derived from fibre walls, it is completely
other parameters, by the fine structure of pulp
different to primary or secondary fines because
fibres. Refining is the method most frequently
MFC is a fibrillar network of entangled fibrils.
used in papermaking to change the fine struc-
The size of the fibrils varies across a wide range
ture of fibres. Fibre fibrillation takes place dur-
from 20-30 nm in width, but larger fibril bundles
ing refining and increases the surface area of
are present as well. Alince and co-workers
fibres. At the same time different types of fine
compared the behaviour and effects on paper
structures are produced. This influences not
properties of MFC, fines of high and low specific
only the final paper strength but also optical
surface area, and microcrystalline cellulose.
properties and the dewatering properties dur-
Their results indicate that the strength prop-
WORKING GROUP 3.
erty improvement is much greater with MFC. A
Meinl and Erhard [6]. Sheets were formed in a
different type of action was observed particu-
Rapid Köthen former according to ISO 5269-2
larly with bleached kraft pulp, because the light
at a consistency of 0.3%. The MFC used was
scattering coefficient was almost unaffected by
stirred for 10 minutes at 0.2% consistency and
MFC in contrast to other fines, where increas-
treated with an ultra-turrax blender for 2 min-
ing light scattering coefficients indicated that a
utes. MFC was added to the stock container of
higher relative bonded area (RBA) was respon-
the Rapid Köthen former sheet per sheet, to a
sible for the improvement in strength properties
pulp consistency of 0.3%. When PEI was used
[4]. Due to the nano-scale level and similarity
as a retention aid, it was also added in the
of MFC to other fines and fibres it is difficult to
stock container after the MFC addition. Before
characterize the mechanisms and effectiveness
sheet forming the SR value was measured.
of MFC in sheet forming. In order to reveal more
The dried sheets were characterized accord-
about the effectiveness and interaction of MFC
ing to standard methods for light scattering
with fibres a top-down approach was used, sup-
coefficient S Scott bond z-strength, apparent
ported by model assumption and calculation
density, tearing resistance, tensile index, and
methods. The bonding strength was calculated
air permeability.
based on the PAGE equation; and the hydro-dynamic mass-specific surface area (SSA) of
MFC was calculated as well.
The mass-specific surface area (SSA) – an
empirical formula based on the SR value – was used for calculation.
A mixture of dried bleached hardwood
and softwood pulps (ratio 4:1) was used as pulp source together with 2% suspension of
The factor c
is about 6,24 when applying
micro-fibrillated cellulose (MFC) supplied by
corresponding known values of SR and SSA
STFI-Packforsk in Sweden. MFC was prepared
from Heinemann [7, 8]. Eq. 1 is only valid if no
according to Pääkkö and co-workers [5]. In
chemical additives are used which could influ-
order to support the retention of fines and MFC
ence the pulp viscosity). The SSA value is addi-
a retention aid based on high-molecular poly-
tive. If SSA
, are the specific surface
ethylene imine (PEI) was used.
areas of the pulp / microfibrillated cellulose and w
is the mass-weighted MFC share then the
specific surface area SSA
Technical methods
The dried market pulp was disintegrated in
water for 15 minutes, at 40°C and a consist-ency of 5%. The resulting pulp suspension
To estimate the relative bonded area (RBA)
was then refined in a pilot refiner at a consist-
– a critical value for applying the PAGE equa-
ency of 4%, using a specific refining energy
tion – in a given sheet, one can use a regular
of 65 kWh/t and a specific edge load of 0.1
fibre network reference which is made up of the
Ws/m. After refining the fibre dimensions were
same fibres and which has the same apparent
analyzed by means of a Fiberlab 3.0 device. A
density as the original fibre network. The RBA
special method was used to characterize the
was assumed as ratio between bonded area
fibre fraction and dimensions of collapsed and
(A ) and total area (A ) according to the follow-
dried fibres in the fibre network according to
WORKING GROUP 3.
riorated. The SR value has increased dramati-cally from 28 to 86 at 5% MFC. The addition of
PEI caused MFC and fines to agglomerate on fibre surfaces, thus helping to reduce the SR
The values D (diameter) and H (height) of
value. At the same time, strength properties
collapsed and dried fibres in the network were
have been improved to the same extent. But it
calculated by means of the fibre morphology
is obvious that not all MFC has been retained
data from FIBRELAB 3.0 according to Meinl
in the paper sheet, because the PEI contain-
and Erhard [6]. We have yet to calculate the dis-
ing sheets had always higher strength levels
tance d (distance between neighbouring fibres
than sheets containing no PEI - due to better
in a layer, which equals the length and width of
fines and MFC retention. The tensile index has
the elementary cell) according to (Eq. 4). This
increased by up to 70% , and also the Scott
equation ensures that the apparent density of
Bond z-strength by up to 170% in compari-
the elementary cell equals the apparent density
son to the reference pulp. However one can
ρ of the sheet.
see that the apparent density has remained almost unaffected, indicating that the strength improvement is not due to a higher RBA as
usually expected from common fines. But – by contrast – the light scattering S as indicator of
The bonding strength b can now be calculat-
the unbonded area has been reduced.
ed via the Page equation [9] for given values of
In order to reveal more about the mecha-
mean fibre length FL, tensile index T and zero-
nisms and effectiveness of MFC the SSA was
span tensile index ZI. The cross sectional fibre
calculated based on dewatering properties.
equals D·H and the fibre perimeter P
The calculation results of SSA are listed in
equals 2(D+H). For the zero-span tensile index
Tab. 2. It is obvious that the SSA of the whole
a value of 150 Nm/g was assumed.
pulp has been increased by MFC. At 5% MFC the SSA of the pulp is 12.6 m²/g. This value is in a range usually obtained by intense refin-
ing only. This increase shows that with MFC more OH-groups are available for the forma-tion of more H-bonds between pulp fibres.
Results and discussion
The SSA of the MFC has been calculated at 170.7 - 182.8 m²/g. This range is consist-
The sheet properties are listed in Tab. 1.
ent with the results of other authors working
As expected, pulp mat dewatering was dete-
with nanofibrillar cellulose aerogels. Hoepfner
Tab. 1: Sheet properties of MFC containing papers
WORKING GROUP 3.
and Co-workers estimated the BET surface
of MFC containing paper sheets. The results
area of freeze dried MFC at 160 m²/g and by
suggest that the high surface area and avail-
supercritical drying in the range of 200-220
able OH-groups lead to much more H-bonds
m²/g [10].
between the fibres in their contact areas. This
Furthermore the influence of MFC on the
can explain why the density and bulk proper-
bonding strength b between fibres was cal-
ties, respectively, have remained unchanged
culated according to (Eq. 4). The bonding
after the application of MFC.
strength of the reference pulp was calculated at 4.76MPa. At 5% MFC the calculated bond-ing strength was increased to 9MPa. As men-
tioned above PEI as retention aid improves the retention of MFC. This is also reflected
The high SSA of MFC leads to improved
by the bonding strength, where b was calcu-
interactions between fines and fibres. In line with
lated at 10.62. In Fig. 1 the calculated bonding
the number of H-bonds, the bonding strength is
strength has been plotted against the Scott
increased. It may be concluded that the bond-
Bond z-strength often used to describe the
ing strength is improved not only by the greater
bonding degree in paper sheets. Obviously,
bonding area due to better fines retention, but
there is a clear correlation between these two
also by a higher number of H-bonds in the
different approaches to estimating the bond-
contact areas. However the behavior of MFC is
ing properties. This indicates that the method
ambiguous and difficult to explain, because the
used for calculating the bonding strength is
decrease in light scattering properties indicates
also useful to describe the bonding behaviour
an increase in RBA which is mostly connected to an increase in apparent density. But this was not observed here.
[1] Turbak, A. F., Snyder, F. W., Sandberg,
K.R., J. Appl. Polym. Sci.: Appl. Polym.
Tab. 2: Mass-specific surface area (SSA) of pulp and MFC
Symp. 37 815-827 (1983)
[2] Herrick, F. W., Casebier, R. L., Hamilton,
J. K., Sandberg, K. R., J. Appl. Polym. Sci.: Appl. Polym. Symp. 37 797-813 (1983)
[3] Lindström, T.; Ankerfors, M., Henriks-
son, G., Patent Int. Publ. No.WO 2007/091942 A1 (2007)
[4] Alince, B., Porubská, J., van de Ven,
T.G.M., The Science of Papermaking 12th Fundamental Research Symposi-um in the Oxford and Cambridge Series, 1343-1355 (2002)
[5] Pääkkö, M., Ankerfors, M., Kosonen, H.,
Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, T., Ikkala, O., Lindström, T., Biomacromol-
Fig. 1: Calculated bonding strength in comparison to Scott
Bond z-strength
ecules 8 1934-1941 (2007)
WORKING GROUP 3.
[6] Meinl, G., Erhard, K., 9th PIRA Interna-
[8] Heinemann, S. Evaluation of Specific
tional Refining Conference, 22-23 Feb-
Surface – History or new opportunity?
ruary 2006, Vienna, Austria
International Mechanical Pulping Con-
[7] Heinemann, S. Beitrag zur Bewertung
ference, Helsinki, 2001
der massespezifischen Oberfläche und
[9] Page, D.H., TAPPI J. 52 674-681
ihres Einflusses auf das Festigkeitsver-
halten von Papierfaserstoffen.
[10] Hoepfner, S., Ratke, L., Milow, B., Cel-
Ph. thesis, TU Dresden, 1984.
lulose 15 121-129 (2008)
temi magántanára koordinálta, együttműködve a Papír- és Nyomdaipari Egyesület (PNyME) Papír-ipari Szakosztálya elnökével, Szőke Andrással, valamint, az Egyesület ügyvezető igazgatójával, Pesti Sándorral.
A rendezvény három fő eseménye az Inté-
ző Bizottság ülése, a három Munkacsoport önálló tanácskozása és az MCS-k profiljának megfelelő 12 előadásból álló Szakszeminárium volt.
A program fontos kiegészítése volt a Buda-
pesttől 75 kilométerre levő Dunapack Papír és
Csomagolóanyag Zrt dunaújvárosi papírgyá-
Lele István
Vígh András
rának meglátogatása. Dr. Szikla Zoltán elnök-
helyettes ismertette a magyar papíripar helyzetét
A COST (European Cooperation in the Field
és ezen belül a Dunapack Zrt-ben folyó csoma-
of Scientific and Technical Research) keretében
golópapír-termelést és -fejlesztést. A Hamburger
szervezett E54 COST ACTION 2006–2010 prog-
csoport Dunaújvárosban 205 millió eurós beruhá-
ramban („Papírgyártásban használt rostok
zás keretében 1.500 m/min sebességű, 7.800 mm
finomszerkezetének és tulajdonságainak jel-
munkaszélességű új papírgépet helyez üzembe,
lemzése új technológiákkal") 19 együttműködő
melynek évi kapacitása 350.000 t 70–150 g/m²
európai ország vesz részt.
csomagolópapír. A résztvevők megtekinthették az üzem működő papírgépét és az új beruházás
A program fő célja egy olyan nemzetközi
fórum létrehozása, ahol lehetőség nyílik a papír-
A gyárlátogatást követően Budapesten a részt-
ipari rostok mikroszerkezete és a kész papír
vevők baráti és szakmai kapcsolatokat erősítő
makroszkópikus tulajdonságai közötti összefüg-
kitűnő hangulatú közös vacsorán vettek részt.
gésekről új ismeretek szerzésére. Ezen túlme-nően különös figyelmet igényel, hogy hogyan
Záró beszédében Prof. Dr. Arnis Treimanis
befolyásolják a kémiai, illetve mechanikai feltárási
a COST E54 Akció Intéző Bizottsága elnöke
folyamatok és utánkezelések a papírgyártásra
köszönetét fejezte ki a Munkacsoportok Koordi-
alkalmas különböző rostok összetételét és finom-
nátorainak, az előadások szerzőinek, valamint
valamennyi tisztségviselőnek és Intéző Bizottsági
A kutató munka három munkacsoportban
tagnak aktív tevékenységükért a Szakszeminári-
(MCS) folyik. Témák:
um előkészítésében és megvalósításában. Külön
– MCS1: Különböző kezelések hatása a papír-
köszönet az Intéző Bizottság magyar tagjainak,
ipari rostok szerkezetére és kémiai összeté-
Dr. Víg Andrásnak és Lele István úrnak, továbbá
Szőke András úrnak, Pesti Sándor úrnak és Dr.
– MCS2: Egyedi rostok kezelése és jellemzé-
Szikla Zoltán alelnök úrnak. Nagyrabecsülés és
köszönet Dr. Polyánszky Éva főszerkesztő asz-
– MCS3: Rostok finomszerkezetének hatása
szonynak a Szakszeminárium teljes anyagának
papírképző tulajdonságaikra, valamint kémi-
sajtó alá rendezéséért a Papíripar c. folyóirat
ai és enzimatikus reaktivitásukra.
E program keretében 2008-ban két rendez-
Lele István
vényre került sor, áprilisban Graz-ban és október-
ben Budapesten. A hazai rendezvényt a COST
E54 Intéző Bizottságába delegált magyar rész-vevők, Lele István, a Papíripari Kutatóintézet Kft
Dr. Víg András
K+F igazgatója és Dr. Víg András, a Budapesti
Műszaki és Gazdaságtudományi Egyetem egye-
The representatives of 19 European coun-
Groups organised separately from each other
tries cooperate in the program of E54 COST
and a Workshop including 12 Scientific presen-
(European Cooperation in the Field of Scientific
tations in accordance with the activity of WGs.
and Technical Research) ACTION 2006–2010
The Visit of Dunapack Paper and Pack-
"Characterisation of the fine structure and
aging Ltd. in Dunaújváros in distance of 75 km
properties of papermaking fibres using new
from Budapest has been significant additional
part of the program. Detailed information about the present situation of the Hungarian paper
The main objective of the Action is to
and pulp industry as well as about the activity
generate new knowledge on the micro- and
of Dunapack Paper and Packagings Ltd. has
nanostructure of papermaking fibres and prop-
been performed by Dr. Zoltán Szikla vice presi-
erties required for the efficient and sustainable
dent of the Ltd.
use of fibres in traditional, advanced and future
In Dunaújváros a new paper machine (Rate:
products. Furthermore specific attention should
1.500 m/min, productional width 7.800 mm.)
be paid to the influence of the pulping proc-
investment of 205 million EUR has been decid-
esses i.e. for chemical and mechanical pulps
ed by the Hamburger Group establishing a
and fibre treatment on the fine structure and
yearly capacity of 350.000 t corrugated paper
composition of different papermaking fibres.
of 70–150g/m2.
Three working groups (WG) carry out the
After getting back from the excursion a joint
necessary scientific activities within the pro-
dinner has been organized for the participants
where the excellent atmosphere did a lot for
– WG1: Structure and chemical composi-
strengthening the friendly and professional
tion of papermaking fibres after different
relations within the international group of the
types of treatments.
experts of paper and pulp production and
– WG2: Treatment and characterisation of
individual fibres by microsystem technolo-gies.
In closing the Management Commit-
– WG3: The impact of the fine structure of
tee meeting Action Chair Prof. A. Treimanis
fibres on their papermaking properties and
expressed his gratitude to the Working Group
their chemical and enzymatic reactivity.
co-ordinators, the authors of the presentations as well as other officeholders and MC members
Two meetings have been performed within
for their active role in preparing and performing
the program in 2008 in Graz, in April and in
the workshop. In particular he thanked the local
Budapest, in October.
organizers Dr. András Víg, Mr. István Lele, Mr.
The Hungarian meeting has been organised
András Szőke, Mr. Sándor Pesti and to vice
by the local MC members: István Lele manag-
president Dr. Zoltán Szikla. Special thanks go
ing director of the Paper Research Institute Ltd.
to Dr. Éva. Polyánszky for preparing the Work-
and prof. Dr. András Víg Budapest University
shop Proceedings collection in form of journal
of Technology and Economics in cooperation
"Papiripar" special edition.
with the Technical Association of the Hungar-ian Paper and Printing Industry represented by
István Lele
András Szőke Chairman of the Section of Paper
Managing Director
Industry and by Sándor Pesti managing director
of the Society.
The three main parts of the Meeting have
Prof. Dr. András Víg
been: MC meeting, meeting of the Working
Technical Association of Paper and Printing
Industry – Budapest
[email protected] – www.pnyme.hu
A szerkesztésért felelős: Dr. Polyánszky Éva
Tájékoztatjuk Önöket, hogy a Papíripar további példányai hozzáfér-
A szerkesztőség címe : 1027 Budapest, Fő utca 68. IV. em 416.
1 példány az egyesületben átvéve
Postacím: 1371 Budapest, Pf. 433
1 példány postázva
Kiadja: a Papír- és Nyomdaipari Műszaki Egyesület
A korábban megjelent lapszámok – korlátozott példányokban – kap-
Telefon: 457-0633
Telefon/fax: 202-0256
1 példány az egyesületben átvéve
E-mail: [email protected]
1 példány postázva
honlap: www.pnyme.hu
Külföldön terjeszti a Batthyány Kultúr-Press Kft.
Felelős kiadó: Fábián Endre főtitkár
1014 Budapest, Szentháromság tér 6.
Szedés, tördelés, nyomás:
MODOK és Társa Kft., Kiskunhalas
Hirdetések felvétele: a Papír- és Nyomdaipari Műszaki Egyesület
Ügyvezető igazgató Modok Balázs
Terjeszti a PNYME
1027 Budapest, Fő utca 68, IV. em. 416.
Előfizethető a PNYME titkárságán, közvetlenül vagy postautalványon
Telefon: 457-0633 • Telefon/fax: 202-0256
Előfizetési díj 2008. évre: 2700 Ft + 5% ÁFA
HU ISSN 0031-1448
Merry Christmas and a happy New Year
Félix Navidad y próspero A o
Frohe Weihnachten und ein glückliches neues Jahr
Buon Natale e felice Anno Nuovo
Joyeux No l et Bonne Année
Prettige Kerstdagen en Gelukkig Nieuujaar
Kellemes karácsonyi ünnepeket
és boldog új évet kívánunk
…és búcsúzik a fõsz
Source: http://www.pnyme.hu/download.php?kid=23
Datasheet for bl21(de3) competent e. coli (c2527; lot 30)
5 Minute Transformation Protocol BL21(DE3) A shortened transformation protocol resulting in approximately 10% effi-ciency compared to the standard protocol may be suitable for applications Competent E. coli where a reduced total number of transformants is acceptable.Follow the Transformation Protocol with the following changes:1. Steps 3 and 5 are reduced to 2 minutes.
Glq1201043 garden party stallholders info pack.indd
From the team behind the Gloucester Quays Victorian Market and Gloucester Quays Food Festival. Landmark events attracting record breaking visitor numbers to the Quays - in excess of 80,000 in the case of the Victorian Market. We don't like to blow our own trumpet, but we think we know a thing or two about organising successful events at this venue and our latest event will be no exception.This April, the alotment chic Gloucester Quays wil be in ful bloom - with our GARDEN PARTY, which includes live